Conjunction with Negative Equivalent to Negation of Implication/Formulation 1
Jump to navigation
Jump to search
Theorem
- $p \land \neg q \dashv \vdash \neg \paren {p \implies q}$
This can be expressed as two separate theorems:
Forward Implication
- $p \land \neg q \vdash \neg \paren {p \implies q}$
Reverse Implication
- $\neg \paren {p \implies q} \vdash p \land \neg q$
Proof by Truth Table
We apply the Method of Truth Tables.
As can be seen by inspection, the truth values under the main connectives match for all boolean interpretations.
$\begin{array}{|cccc||cccc|} \hline p & \land & \neg & q & \neg & (p & \implies & q) \\ \hline \F & \F & \T & \F & \F & \F & \T & \F \\ \F & \F & \F & \T & \F & \F & \T & \T \\ \T & \T & \T & \F & \T & \T & \F & \F \\ \T & \F & \F & \T & \F & \T & \T & \T \\ \hline \end{array}$
$\blacksquare$
Sources
- 1965: E.J. Lemmon: Beginning Logic ... (previous) ... (next): Chapter $2$: The Propositional Calculus $2$: $2$: Theorems and Derived Rules: Exercise $5 \ \text{(g)}$