Conjunction with Negative Equivalent to Negation of Implication/Formulation 2
Jump to navigation
Jump to search
Theorem
- $\vdash \paren {p \land \neg q} \iff \paren {\neg \paren {p \implies q} }$
This can be expressed as two separate theorems:
Forward Implication
- $\vdash \paren {p \land \neg q} \implies \paren {\neg \paren {p \implies q} }$
Reverse Implication
- $\vdash \paren {\neg \paren {p \implies q} } \implies \paren {p \land \neg q}$
Proof 1
By the tableau method of natural deduction:
Line | Pool | Formula | Rule | Depends upon | Notes | |
---|---|---|---|---|---|---|
1 | 1 | $p \land \neg q$ | Assumption | (None) | ||
2 | 1 | $\neg \paren {p \implies q}$ | Sequent Introduction | 1 | Conjunction with Negative Equivalent to Negation of Implication: Formulation 1 | |
3 | $\paren {p \land \neg q} \implies \paren {\neg \paren {p \implies q} }$ | Rule of Implication: $\implies \II$ | 1 – 2 | Assumption 1 has been discharged | ||
4 | 4 | $\neg \paren {p \implies q}$ | Assumption | (None) | ||
5 | 4 | $p \land \neg q$ | Sequent Introduction | 4 | Conjunction with Negative Equivalent to Negation of Implication: Formulation 1 | |
6 | $\paren {\neg \paren {p \implies q} } \implies \paren {p \land \neg q}$ | Rule of Implication: $\implies \II$ | 4 – 5 | Assumption 4 has been discharged | ||
7 | $\paren {p \land \neg q} \iff \paren {\neg \paren {p \implies q} }$ | Biconditional Introduction: $\iff \II$ | 3, 6 |
$\blacksquare$
Proof by Truth Table
We apply the Method of Truth Tables.
As can be seen by inspection, the truth values under the main connective is true for all boolean interpretations.
$\begin{array}{|cccc|c|cccc|} \hline p & \land & \neg & q & \iff & \neg & (p & \implies & q) \\ \hline \F & \F & \T & \F & \T & \F & \F & \T & \F \\ \F & \F & \F & \T & \T & \F & \F & \T & \T \\ \T & \T & \T & \F & \T & \T & \T & \F & \F \\ \T & \F & \F & \T & \T & \F & \T & \T & \T \\ \hline \end{array}$
$\blacksquare$