Construction of Regular 257-Gon
Jump to navigation
Jump to search
Theorem
It is possible to construct a regular polygon with $257$ sides) using a compass and straightedge construction.
Proof
From Construction of Regular Prime $p$-Gon Exists iff $p$ is Fermat Prime it is known that this construction is possible.
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Historical Note
It was proved by Carl Friedrich Gauss in $1801$ that the construction is possible.
The first actual constructions of a regular $257$-gon were given by Magnus Georg Paucker in $1822$ and Friedrich Julius Richelot in $1832$.
Sources
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $257$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $257$