Construction of Sixth Apotome

From ProofWiki
Jump to navigation Jump to search

Theorem

In the words of Euclid:

To find the sixth apotome.

(The Elements: Book $\text{X}$: Proposition $90$)


Proof

Euclid-X-87.png

Let $A$ be a rational straight line.

Let $E$, $BC$ and $CD$ be numbers set out which do not have pairwise between them the ratio that a square number has to another square number.

Let $CB : BD$ also not be the ratio that a square number has to a square number.

Using Porism to Proposition $6$ of Book $\text{X} $: Magnitudes with Rational Ratio are Commensurable, let it be contrived that:

$E : BC = A^2 : FG^2$

and:

$BC : CD = FG^2 : GH^2$


We have that:

$E : BC = A^2 : FG^2$.

From Proposition $6$ of Book $\text{X} $: Magnitudes with Rational Ratio are Commensurable:

$A^2$ is commensurable with $FG^2$.

But $A^2$ is rational.

Therefore $FG^2$ is rational.

Therefore $FG$ is rational.

We have that $E : BC$ is not the ratio that a square number has to another square number.

Therefore $A^2 : FG^2$ is not the ratio that a square number has to another square number.

Therefore from Proposition $9$ of Book $\text{X} $: Commensurability of Squares:

$A$ is incommensurable in length with $FG$.


We have that:

$BC : CD = FG^2 : GH^2$

From Proposition $6$ of Book $\text{X} $: Magnitudes with Rational Ratio are Commensurable:

$FG^2$ is commensurable with $GH^2$.

But $FG^2$ is rational.

Therefore $GH^2$ is rational.

Therefore $GH$ is rational.

We have that $BC : CD$ is not the ratio that a square number has to another square number.

Therefore $FG^2 : GH^2$ is not the ratio that a square number has to another square number.

Therefore from Proposition $9$ of Book $\text{X} $: Commensurability of Squares:

$FG$ is incommensurable in length with $GH$.


Both $FG$ and $GH$ are rational.

Therefore $FG$ and $GH$ rational straight lines which are commensurable in square only.

Therefore $FH$ is an apotome.


It remains to be shown that $FH$ is a sixth apotome.

We have that:

$E : BC = A^2 : FG^2$.

and:

$BC : CD = FG^2 : GH^2$

Therefore from Proposition $22$ of Book $\text{V} $: Equality of Ratios Ex Aequali:

$E : CD = A^2 : HG^2$

But $E : CD$ is not the ratio that a square number has to another square number.

Therefore neither is $A^2 : GH^2$ the ratio that a square number has to another square number.

Therefore neither $FG$ and $GH$ is incommensurable in length with the rational straight line $A$.

Now let $K^2 = FG^2 - GH^2$.

We have that:

$BC : CD = FG^2 GH^2$

Therefore by Porism to Proposition $19$ of Book $\text{V} $: Proportional Magnitudes have Proportional Remainders:

$BC : BD = FG^2 : K^2$

But $BC$ does not have to $BD$ the ratio that a square number has to another square number.

Therefore $FG^2$ does not have to $K^2$ the ratio that a square number has to another square number.

Therefore by Proposition $9$ of Book $\text{X} $: Commensurability of Squares:

$FG$ is incommensurable in length with $K$.

So:

$FG^2$ is greater than $GH^2$ by the square on $K$.
$FG^2$ is greater than $GH^2$ by the square on a straight line which is incommensurable in length with $FG$.

So neither $FG$ nor $GH$ is commensurable in length with the rational straight line $A$.

Therefore, by definition, $FH$ is a sixth apotome.

$\blacksquare$


Historical Note

This proof is Proposition $90$ of Book $\text{X}$ of Euclid's The Elements.


Sources