Continued Fraction Expansion of Golden Mean
Jump to navigation
Jump to search
Theorem
The golden mean has the simplest possible continued fraction expansion, namely $\sqbrk {1, 1, 1, 1, \ldots}$:
- $\phi = 1 + \cfrac 1 {1 + \cfrac 1 {1 + \cfrac 1 {\ddots} } }$
This sequence is A000012 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
Successive Convergents
The $n$th convergent is given by:
- $C_n = \dfrac {F_{n + 1} } {F_n}$
where $F_n$ denotes the $n$th Fibonacci number.
Rate of Convergence
This continued fraction expansion has the slowest rate of convergence of all simple infinite continued fractions.
Proof
Let:
- $x = 1 + \cfrac 1 {1 + \cfrac 1 {1 + \cfrac 1 {\ddots} } }$
Then:
\(\ds x\) | \(=\) | \(\ds 1 + \frac 1 x\) | substituting for $x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x^2\) | \(=\) | \(\ds x + 1\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x^2 - x - 1\) | \(=\) | \(\ds 0\) |
The result follows from Golden Mean as Root of Quadratic.
$\blacksquare$
Sources
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $1 \cdotp 61803 \, 39887 \, 49894 \, 84820 \, 45868 \, 34365 \, 63811 \, 77203 \, 09179 \, 80576 \ldots$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $1 \cdotp 61803 \, 39887 \, 49894 \, 84820 \, 45868 \, 34365 \, 63811 \, 77203 \, 09179 \, 80576 \ldots$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): golden section