Continued Fraction Expansion of Pi
Theorem
The constant $\pi$ (pi) has the continued fraction expansion:
- $\pi = \sqbrk {3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, \ldots}$
This sequence is A001203 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
Convergents
The convergents of the continued fraction expansion to $\pi$ (pi) are:
- $3, \dfrac {22} 7, \dfrac {333} {106}, \dfrac {355} {113}, \dfrac {103993} {33102}, \dfrac {104348} {33215}$
The numerators form sequence A002485 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
The denominators form sequence A002486 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
These best rational approximations are accurate to $0, 2, 4, 6, 9, 9, 9, 10, 11, 11, 12, 13, \ldots$ decimals.
This sequence is A114526 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
Zu Chongzhi Fraction
The Zu Chongzhi fraction is an exceptionally accurate approximation to $\pi$ (pi):
- $\pi \approx \dfrac {355} {113}$
whose decimal expansion is:
- $\pi \approx 3 \cdotp 14159 \, 292$
This sequence is A068079 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $3 \cdotp 14159 \, 26535 \, 89793 \, 23846 \, 26433 \, 83279 \, 50288 \, 41972 \ldots$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $3 \cdotp 14159 \, 26535 \, 89793 \, 23846 \, 26433 \, 83279 \, 50288 \, 41971 \ldots$