Convergence in Normed Dual Space implies Weak-* Convergence

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {X, \norm {\, \cdot \,}_X}$ be a normed vector space.

Let $\struct {X^\ast, \norm {\, \cdot \,}_{X^\ast} }$ be the normed dual space of $\struct {X, \norm {\, \cdot \,}_X}$.

Let $\sequence {f_n}_{n \mathop \in \N}$ be a convergent sequence in $X^\ast$.


Then $\sequence {f_n}_{n \mathop \in \N}$ converges weakly-$\ast$.


Proof 1

From Convergent Sequence in Normed Vector Space is Weakly Convergent, $\sequence {f_n}_{n \mathop \in \N}$ converges weakly.

From Weakly Convergent Sequence in Normed Dual Space is Weakly-* Convergent, $\sequence {f_n}_{n \mathop \in \N}$ converges weakly-$\ast$.

$\blacksquare$


Proof 2

Let $f \in X^\ast$ be the limit of $\sequence {f_n}_{n \mathop \in \N}$, i.e.:

$\norm {f_n - f}_{X^\ast} \stackrel{n \to \infty}{\longrightarrow} 0$


Thus, for each $x \in X$:

\(\ds \size {\map {f_n} x - \map f x}\) \(=\) \(\ds \size {\map {\paren {f_n - f} } x}\) Definition of Vector Space of Bounded Linear Functionals
\(\ds \) \(\le\) \(\ds \norm {f_n - f}_{X^\ast} \norm x_X\) Fundamental Property of Norm on Bounded Linear Functional
\(\ds \) \(\) \(\ds \stackrel{n \to \infty}{\longrightarrow} 0\)

$\blacksquare$


Sources