Convergence of P-Series

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p \in \C$ be a complex number.

Absolute Convergence if $\map \Re p > 1$

Let $\map \Re p > 1$.

Then the $p$-series:

$\ds \sum_{n \mathop = 1}^\infty n^{-p}$

converges absolutely.


Divergence if $0 <\map \Re p \le 1$

Let $0 < \map \Re p \le 1$.

Then the $p$-series:

$\ds \sum_{n \mathop = 1}^\infty n^{-p}$

diverges.


Real Case

Let $p \in \R$ be a real number.

Then the $p$-series:

$\ds \sum_{n \mathop = 1}^\infty n^{-p}$

is convergent if and only if $p > 1$.


Also see

The mapping $\ds p \mapsto \sum_{n \mathop = 1}^\infty n^{-p}$ is well-known as the Riemann zeta function.