Cosecant Exponential Formulation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z$ be a complex number.

Let $\csc z$ denote the cosecant function and $i$ denote the imaginary unit: $i^2 = -1$.

Then:

$\csc z = \dfrac {2 i} {e^{i z} - e^{-i z} }$


Proof

\(\ds \csc z\) \(=\) \(\ds \frac 1 {\sin z}\) Definition of Complex Cosecant Function
\(\ds \) \(=\) \(\ds 1 / \frac {e^{i z} - e^{-i z} } {2 i}\) Sine Exponential Formulation
\(\ds \) \(=\) \(\ds \frac {2 i} {e^{i z} - e^{-i z} }\) multiplying top and bottom by $2 i$

$\blacksquare$


Also see


Sources