Cosecant of Complex Number

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.


Then:

$\csc \paren {a + b i} = \dfrac {\sin a \cosh b - i \cos a \sinh b} {\sin^2 a \cosh^2 b + \cos^2 a \sinh^2 b}$

where:

$\csc$ denotes the complex cosecant function.
$\sin$ denotes the real sine function
$\cos$ denotes the real cosine function
$\sinh$ denotes the hyperbolic sine function
$\cosh$ denotes the hyperbolic cosine function


Proof

\(\ds \csc \paren {a + b i}\) \(=\) \(\ds \frac 1 {\sin \paren {a + b i} }\) Definition of Complex Cosecant Function
\(\ds \) \(=\) \(\ds \dfrac 1 {\sin a \cosh b + i \cos a \sinh b}\) Sine of Complex Number
\(\ds \) \(=\) \(\ds \dfrac {\sin a \cosh b - i \cos a \sinh b} {\paren {\sin a \cosh b - i \cos a \sinh b} \paren {\sin a \cosh b + i \cos a \sinh b} }\) multiplying denominator and numerator by $\sin a \cosh b - i \cos a \sinh b$
\(\ds \) \(=\) \(\ds \dfrac {\sin a \cosh b - i \cos a \sinh b} {\sin^2 a \cosh^2 b - i^2 \cos^2 a \sinh^2 b}\) Difference of Two Squares
\(\ds \) \(=\) \(\ds \dfrac {\sin a \cosh b - i \cos a \sinh b} {\sin^2 a \cosh^2 b + \cos^2 a \sinh^2 b}\) Definition of Imaginary Unit

$\blacksquare$


Also see