Coset Product is Well-Defined/Proof 2
Jump to navigation
Jump to search
Theorem
Let $\struct {G, \circ}$ be a group.
Let $N$ be a normal subgroup of $G$.
Let $a, b \in G$.
Then the coset product:
- $\paren {a \circ N} \circ \paren {b \circ N} = \paren {a \circ b} \circ N$
is well-defined.
Proof
Let $N \lhd G$ where $G$ is a group.
Consider $\paren {a \circ N} \circ \paren {b \circ N}$ as a subset product:
- $\paren {a \circ N} \circ \paren {b \circ N} = \set {a \circ n_1 \circ b \circ n_2: n_1, n_2 \in N}$
This is justified by Coset Product of Normal Subgroup is Consistent with Subset Product Definition.
Since $N$ is normal, each conjugate $b^{-1} \circ N \circ b$ is contained in $N$.
So for each $n_1 \in N$ there is some $n_3 \in N$ such that $b^{-1} \circ n_1 \circ b = n_3$.
So, if $a \circ n_1 \circ b \circ n_2 \in \paren {a \circ N} \circ \paren {b \circ N}$, it follows that:
\(\ds a \circ n_1 \circ b \circ n_2\) | \(=\) | \(\ds a \circ b \circ b^{-1} \circ n_1 \circ b \circ n_2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a \circ b \circ n_3 \circ n_2\) | ||||||||||||
\(\ds \) | \(\in\) | \(\ds \paren {a \circ b} \circ N\) | Definition of Subset Product | |||||||||||
\(\ds \) | \(\in\) | \(\ds N \circ b^{-1}\) | Definition of Normal Subgroup |
That is:
- $\paren {a \circ N} \circ \paren {b \circ N} \subseteq \paren {a \circ b} \circ N$
Then:
\(\ds a \circ b \circ n\) | \(\in\) | \(\ds \paren {a \circ b} \circ N\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a \circ e \circ b \circ n\) | \(\in\) | \(\ds \paren {a \circ N} \circ \paren {b \circ N}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {a \circ b} \circ N\) | \(\subseteq\) | \(\ds \paren {a \circ N} \circ \paren {b \circ N}\) |
So:
- $\paren {a \circ N} \circ \paren {b \circ N} \subseteq \paren {a \circ b} \circ N$
and
- $\paren {a \circ b} \circ N \subseteq \paren {a \circ N} \circ \paren {b \circ N}$
The result follows by definition of set equality.
$\blacksquare$
Sources
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Chapter $\text{II}$: Groups: Quotient Groups: Theorem $3$