Coset Product is Well-Defined/Proof 3
Jump to navigation
Jump to search
Theorem
Let $\struct {G, \circ}$ be a group.
Let $N$ be a normal subgroup of $G$.
Let $a, b \in G$.
Then the coset product:
- $\paren {a \circ N} \circ \paren {b \circ N} = \paren {a \circ b} \circ N$
is well-defined.
Proof
Let $N \lhd G$ where $G$ is a group.
Let $a, a', b, b' \in G: N \circ a = N \circ a', N \circ b = N \circ b'$.
We need to show that $N \circ a \circ b = N \circ a' \circ b'$.
So:
\(\ds N \circ a \circ b\) | \(=\) | \(\ds N \circ a' \circ b\) | as $N \circ a = N \circ a'$ | |||||||||||
\(\ds \) | \(=\) | \(\ds a' \circ N \circ b\) | $N \circ a' = a' \circ N$ as $N$ is normal | |||||||||||
\(\ds \) | \(=\) | \(\ds a' \circ N \circ b'\) | as $N \circ b = N \circ b'$ | |||||||||||
\(\ds \) | \(=\) | \(\ds N \circ a' \circ b'\) | $N \circ a' = a' \circ N$ as $N$ is normal |
$\blacksquare$
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 6.7$. Quotient groups