Coset Product is Well-Defined/Proof 5
Jump to navigation
Jump to search
Theorem
Let $\struct {G, \circ}$ be a group.
Let $N$ be a normal subgroup of $G$.
Let $a, b \in G$.
Then the coset product:
- $\paren {a \circ N} \circ \paren {b \circ N} = \paren {a \circ b} \circ N$
is well-defined.
Proof
Let $N \lhd G$ where $G$ is a group.
Let $a, a', b, b' \in G: a \circ N = a' \circ N, b \circ N = b' \circ N$.
To show that the coset product is well-defined, we need to demonstrate that:
- $\paren {a \circ b} \circ N = \paren {a' \circ b'} \circ N$
So:
\(\ds a \circ N\) | \(=\) | \(\ds a' \circ N\) | |||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a\) | \(\in\) | \(\ds a' \circ N\) | Definition of Left Coset | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a\) | \(=\) | \(\ds a' \circ n_1\) | for some $n_1 \in N$ | |||||||||||
Similarly, $b' = b \circ n_2$ for some $n_2 \in N$. | |||||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a' \circ b'\) | \(=\) | \(\ds a \circ n_1 \circ b \circ n_2\) | ||||||||||||
But $N \circ b = b \circ N$, as $N$ is normal, and so: | |||||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a' \circ b'\) | \(=\) | \(\ds a \circ b \circ n_3 \circ n_2\) | as $n_1 \circ b = b \circ n_3$ for some $n_3 \in N$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a' \circ b'\) | \(\in\) | \(\ds a \circ b \circ N\) | as $n_3 \circ n_2 \in N$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a' \circ b' \circ N\) | \(=\) | \(\ds a \circ b \circ N\) | Definition of Left Coset |
$\blacksquare$
Sources
- 1966: Richard A. Dean: Elements of Abstract Algebra ... (previous) ... (next): $\S 1.10$