Law of Cosines

From ProofWiki
(Redirected from Cosine Law)
Jump to navigation Jump to search

Theorem

Let $\triangle ABC$ be a triangle whose sides $a, b, c$ are such that $a$ is opposite $A$, $b$ is opposite $B$ and $c$ is opposite $C$.

Then:

$c^2 = a^2 + b^2 - 2 a b \cos C$


Proof 1

Let $\triangle ABC$ be embedded in a Cartesian coordinate system by identifying:

$C := \tuple {0, 0}$
$B := \tuple {a, 0}$


CosineRuleCartesian.png

Thus by definition of sine and cosine:

$A = \tuple {b \cos C, b \sin C}$

By the Distance Formula:

$c = \sqrt {\paren {b \cos C - a}^2 + \paren {b \sin C - 0}^2}$

Hence:

\(\ds c^2\) \(=\) \(\ds \paren {b \cos C - a}^2 + \paren {b \sin C - 0}^2\) squaring both sides of Distance Formula
\(\ds \) \(=\) \(\ds b^2 \cos^2 C - 2 a b \cos C + a^2 + b^2 \sin^2 C\) Square of Difference
\(\ds \) \(=\) \(\ds a^2 + b^2 \paren {\sin^2 C + \cos^2 C} - 2 a b \cos C\) Real Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds a^2 + b^2 - 2 a b \cos C\) Sum of Squares of Sine and Cosine

$\blacksquare$


Proof 2

Let $\triangle ABC$ be a triangle.


Case 1: $AC$ greater than $AB$

Using $AC$ as the radius, we construct a circle whose center is $A$.

Now we extend:

$CB$ to $D$
$AB$ to $F$
$BA$ to $G$
$CA$ to $E$.


$D$ is joined with $E$, thus:

CosineRule.png


Using the Intersecting Chords Theorem we have:

$GB \cdot BF = CB \cdot BD$


$AF$ is a radius, so $AF = AC = b = GA$ and thus:

$GB = GA + AB = b + c$
$BF = AF - AB = b - c$

Thus:

\(\ds \paren {b + c} \paren {b - c}\) \(=\) \(\ds a \cdot BD\)
\(\ds \leadsto \ \ \) \(\ds \frac {b^2 - c^2} a\) \(=\) \(\ds BD\)


Next:

\(\ds CD\) \(=\) \(\ds CB + BD\)
\(\ds \) \(=\) \(\ds a + \frac {b^2 - c^2} a\)
\(\ds \) \(=\) \(\ds \frac {a^2 + b^2 - c^2} a\)

As $CA$ is a radius, $CE$ is a diameter.

By Thales' Theorem, it follows that $\angle CDE$ is a right angle.


Then using the definition of cosine, we have

\(\ds \cos C\) \(=\) \(\ds \frac {CD} {CE}\)
\(\ds \) \(=\) \(\ds \frac {\paren {\dfrac {a^2 + b^2 - c^2} a} } {2 b}\)
\(\ds \) \(=\) \(\ds \frac {a^2 + b^2 - c^2} {2 a b}\)
\(\ds \leadsto \ \ \) \(\ds c^2\) \(=\) \(\ds a^2 + b^2 - 2 a b \cos C\)

$\Box$


Case 2: $AC$ less than $AB$

When $AC$ is less than $AB$, the point $B$ lies outside the circle and so the diagram needs to be modified accordingly:

CosineRule2.png



Now we extend:

$BA$ to $G$
$CA$ to $E$.

Then we construct:

$D$ as the point at which $CB$ intersects the circle
$F$ as the point at which $AB$ intersects the circle.


Finally $D$ is joined to $E$.

Using the Secant Secant Theorem we have:

$GB \cdot BF = CB \cdot BD$


$AF$ is a radius, so $AF = AC = b = GA$ and thus:

$GB = GA + AB = b + c$
$BF = AB - AF = b - c$

Thus:

\(\ds \paren {b + c} \paren {b - c}\) \(=\) \(\ds CB \cdot BD\) Secant Secant Theorem
\(\ds \paren {b + c} \paren {b - c}\) \(=\) \(\ds a \cdot BD\)
\(\ds \leadsto \ \ \) \(\ds \frac {b^2 - c^2} a\) \(=\) \(\ds BD\)


Next:

\(\ds CD\) \(=\) \(\ds CB - BD\)
\(\ds \) \(=\) \(\ds a - \frac {b^2 - c^2} a\)
\(\ds \) \(=\) \(\ds \frac {a^2 - b^2 + c^2} a\)

As $CA$ is a radius, $CE$ is a diameter.

By Thales' Theorem, it follows that $\angle CDE$ is a right angle.


Then using the definition of cosine, we have

\(\ds \cos C\) \(=\) \(\ds \frac {CD} {CE}\)
\(\ds \) \(=\) \(\ds \frac {\paren {\dfrac {a^2 - b^2 + c^2} a} } {2 b}\)
\(\ds \) \(=\) \(\ds \frac {a^2 - b^2 + c^2} {2 a b}\)
\(\ds \leadsto \ \ \) \(\ds c^2\) \(=\) \(\ds a^2 + b^2 - 2 a b \cos C\)

$\Box$


Case 3: $AC = AB$

When $AC = AB$ the points $B$, $D$ and $F$ coincide on the circumference of the circle:

CosineRule3.png

We extend:

$BA$ to $G$
$CA$ to $E$

and immediately:

$GB = CB$



$\blacksquare$


Proof 3

Lemma: Right Triangle

Let $\triangle ABC$ be a right triangle such that $\angle A$ is right.

CosineRule-Proof3-right.png
\(\ds a^2\) \(=\) \(\ds b^2 + c^2\) Pythagoras's Theorem
\(\ds c^2\) \(=\) \(\ds a^2 - b^2\) adding $-b^2$ to both sides and rearranging
\(\ds \) \(=\) \(\ds a^2 - 2 b^2 + b^2\) adding $0 = b^2 - b^2$ to the right hand side
\(\ds \) \(=\) \(\ds a^2 - 2 a b \left({\frac b a}\right) + b^2\) multiplying $2 b^2$ by $\dfrac a a$
\(\ds \) \(=\) \(\ds a^2 + b^2 - 2 a b \cos C\) Definition of Cosine: $\cos C = \dfrac b a$

$\Box$


Acute Triangle

Let $\triangle ABC$ be an acute triangle.

CosineRule-Proof3-acute.png

Let $BD$ be dropped perpendicular to $AC$.

Let:

\(\ds h\) \(=\) \(\ds BD\)
\(\ds e\) \(=\) \(\ds CD\)
\(\ds f\) \(=\) \(\ds AD\)


We have that $\triangle CDB$ and $\triangle ADB$ are right triangles.

Hence:

\(\text {(1)}: \quad\) \(\ds c^2\) \(=\) \(\ds h^2 + f^2\) Pythagoras's Theorem
\(\text {(2)}: \quad\) \(\ds a^2\) \(=\) \(\ds h^2 + e^2\) Pythagoras's Theorem
\(\text {(3)}: \quad\) \(\ds b^2\) \(=\) \(\ds \paren {e + f}^2\)
\(\ds \) \(=\) \(\ds e^2 + f^2 + 2ef\)
\(\text {(4)}: \quad\) \(\ds e\) \(=\) \(\ds a \cos C\) Definition of Cosine of Angle


Then:

\(\ds c^2\) \(=\) \(\ds h^2 + f^2\) from $(1)$
\(\ds \) \(=\) \(\ds a^2 - e^2 + f^2\) from $(2)$
\(\ds \) \(=\) \(\ds a^2 - e^2 + f^2 + 2 e^2 - 2 e^2 + 2 e f - 2 e f\) adding and subtracting $2 e^2$ and $2 e f$
\(\ds \) \(=\) \(\ds a^2 + \paren {e^2 + f^2 + 2 e f} - 2 e \paren {e + f}\) rearanging
\(\ds \) \(=\) \(\ds a^2 + b^2 - 2 a b \cos C\) using $(3)$ to substitute for $b^2$ and $b$, and $(4)$ to substitute $e$ for $a \cos C$

$\Box$


Obtuse Triangle

Let $\triangle ABC$ be an obtuse triangle.

CosineRule-Proof3-obtuse.png

Let $AC$ be extended and $BD$ be dropped perpendicular to $AC$.

Let:

\(\ds h\) \(=\) \(\ds BD\)
\(\ds e\) \(=\) \(\ds CD\)
\(\ds f\) \(=\) \(\ds AD\)


We have that $\triangle CDB$ and $\triangle ADB$ are right triangles.

Hence:

\(\text {(1)}: \quad\) \(\ds c^2\) \(=\) \(\ds h^2 + f^2\) Pythagoras's Theorem
\(\text {(2)}: \quad\) \(\ds a^2\) \(=\) \(\ds h^2 + e^2\) Pythagoras's Theorem
\(\text {(3)}: \quad\) \(\ds e^2\) \(=\) \(\ds \paren {b + f}^2\)
\(\ds \) \(=\) \(\ds b^2 + f^2 + 2 b f\)
\(\text {(4)}: \quad\) \(\ds e\) \(=\) \(\ds a \cos C\) Definition of Cosine of Angle


Then:

\(\ds c^2\) \(=\) \(\ds h^2 + f^2\) from $(1)$
\(\ds \) \(=\) \(\ds a^2 - e^2 + f^2\) from $(2)$
\(\ds \) \(=\) \(\ds a^2 - b^2 - f^2 - 2 b f + f^2\) substituting for $e^2$ from $(3)$
\(\ds \) \(=\) \(\ds a^2 - b^2 - 2 b f + 2 b^2 - 2 b^2\) simplifying and adding and subtracting $2 b^2$
\(\ds \) \(=\) \(\ds a^2 + b^2 - 2 b \paren {b + f}\) rearranging
\(\ds \) \(=\) \(\ds a^2 + b^2 - 2 a b \cos C\) using $(4)$ to substitute $b + f = e$ with $a \cos C$

$\blacksquare$


Also known as

The Law of Cosines is also known as the Cosine Rule or Cosine Law.

It is known in France as Théorème d'Al-Kashi (Al-Kashi's Theorem) after Jamshīd al-Kāshī, who is believed to have first discovered it.


Also see


Historical Note

The Law of Cosines is believed to have been discovered by Jamshīd al-Kāshī.


Sources