Cosine of 36 Degrees
Jump to navigation
Jump to search
Theorem
- $\cos 36 \degrees = \cos \dfrac \pi 5 = \dfrac \phi 2 = \dfrac {1 + \sqrt 5} 4$
where $\phi$ denotes the golden mean.
Proof 1
Let $u = \cos 72 \degrees, v = \cos 36 \degrees$.
Recall from Cosine of Complement equals Sine that $\map \cos {\dfrac \pi 2 - \theta} = \sin \theta$
Therefore:
\(\ds \map \cos {90 \degrees - 18 \degrees}\) | \(=\) | \(\ds \map \sin {18 \degrees}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \cos {72 \degrees}\) | \(=\) | \(\ds \map \sin {18 \degrees}\) |
Therefore:
\(\ds \cos 36 \degrees\) | \(=\) | \(\ds 1 - 2 \sin^2 18 \degrees\) | Double Angle Formula for Cosine: Corollary 2 | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds 1 - 2 u^2\) | substituting for $u$ and $v$ | ||||||||||
\(\ds \cos 72 \degrees\) | \(=\) | \(\ds 2 \cos^2 36 \degrees - 1\) | Double Angle Formula for Cosine: Corollary 1 | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds u\) | \(=\) | \(\ds 2 v^2 - 1\) | substituting for $u$ and $v$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds u + v\) | \(=\) | \(\ds 2 \paren {v^2 - u^2}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \paren {v + u} \paren {v - u}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 1\) | \(=\) | \(\ds 2 \paren {v - u}\) | dividing both sides by $\paren {v + u}$ | ||||||||||
\(\ds \) | \(=\) | \(\ds 2 v - 4 v^2 + 2\) | substituting $u = 2 v^2 - 1$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {2 v}^2\) | \(=\) | \(\ds 2 v + 1\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 v\) | \(=\) | \(\ds \phi\) | Square of Golden Mean equals One plus Golden Mean |
$\blacksquare$
Proof 2
From Complex Algebra: $z^4 - 3z^2 + 1 = 0$, the roots of $z^4 - 3z^2 + 1 = 0$ are:
- $2 \cos 36 \degrees, 2 \cos 72 \degrees, 2 \cos 216 \degrees, 2 \cos 252 \degrees$
Then:
\(\ds z^4 - 3z^2 + 1\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds z^2\) | \(=\) | \(\ds \dfrac {3 \pm \sqrt {\paren {-3}^2 - 4 \times 1} } 2\) | Quadratic Formula | ||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 3 2 \pm \dfrac {\sqrt 5} 2\) |
- $\paren {2 \cos 36^\circ}^2 > \paren {2 \cos 45^\circ}^2 = 2 > \dfrac 3 2 - \dfrac {\sqrt 5} 2$
so $\paren {2 \cos 36^\circ}^2 = \dfrac 3 2 + \dfrac {\sqrt 5} 2$.
Let $z = k \paren {a + \sqrt 5}$, where $k \in \Q$ and $a \in \Z$.
Then for $z = 2 \cos 36^\circ$:
\(\ds k^2 \paren {a + \sqrt 5}^2\) | \(=\) | \(\ds \dfrac 3 2 + \dfrac {\sqrt 5} 2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 k^2 \paren {a^2 + 5 + 2 a \sqrt 5}\) | \(=\) | \(\ds 3 + \sqrt 5\) | Square of Sum |
By comparing coefficients:
\(\ds \paren {a^2 + 5} : 2 a\) | \(=\) | \(\ds 3 : 1\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a^2 + 5\) | \(=\) | \(\ds 6 a\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a^2 - 6 a + 5\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a - 5} \paren {a - 1}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a\) | \(=\) | \(\ds 1 \text{ or } 5\) |
We have, from the expansion above:
- $4 a k^2 = 1$
which leads to:
- $\sqrt a = \dfrac 1 {2 k}$
so $a$ must be square.
Thus $a = 1$ and hence:
- $2 \cos 36^\circ = k \paren {a + \sqrt 5} = \dfrac {1 + \sqrt 5} 2$
- $\cos 36^\circ = \dfrac {1 + \sqrt 5} 4$
$\blacksquare$
Proof 3
\(\ds \sin 108 \degrees\) | \(=\) | \(\ds 3 \sin 36 \degrees - 4 \sin^3 36 \degrees\) | Triple Angle Formula for Sine | |||||||||||
\(\ds \sin 72 \degrees\) | \(=\) | \(\ds 3 \sin 36 \degrees - 4 \sin^3 36 \degrees\) | Sine of Supplementary Angle | |||||||||||
\(\ds 2 \sin 36 \degrees \cos 36 \degrees\) | \(=\) | \(\ds 3 \sin 36 \degrees - 4 \sin^3 36 \degrees\) | Double Angle Formula for Sine | |||||||||||
\(\ds 2 \cos 36 \degrees\) | \(=\) | \(\ds 3 - 4 \sin^2 36 \degrees\) | dividing both sides by $\sin 36 \degrees$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 4 \cos^2 36 \degrees - 1\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 4 \cos^2 36 \degrees - 2 \cos 36 \degrees - 1\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \cos 36 \degrees\) | \(=\) | \(\ds \frac {2 \pm \sqrt {2^2 + 4 \times 4} } {2 \times 4}\) | Quadratic Formula | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 \pm \sqrt {20} } 8\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {1 + \sqrt 5} 4\) | negative root is rejected as $\cos 36 \degrees > 0$ |
$\blacksquare$