Cosine of 36 Degrees/Proof 1
Jump to navigation
Jump to search
Theorem
- $\cos 36 \degrees = \cos \dfrac \pi 5 = \dfrac \phi 2 = \dfrac {1 + \sqrt 5} 4$
where $\phi$ denotes the golden mean.
Proof
Let $u = \cos 72 \degrees, v = \cos 36 \degrees$.
Recall from Cosine of Complement equals Sine that $\map \cos {\dfrac \pi 2 - \theta} = \sin \theta$
Therefore:
\(\ds \map \cos {90 \degrees - 18 \degrees}\) | \(=\) | \(\ds \map \sin {18 \degrees}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \cos {72 \degrees}\) | \(=\) | \(\ds \map \sin {18 \degrees}\) |
Therefore:
\(\ds \cos 36 \degrees\) | \(=\) | \(\ds 1 - 2 \sin^2 18 \degrees\) | Double Angle Formula for Cosine: Corollary 2 | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds 1 - 2 u^2\) | substituting for $u$ and $v$ | ||||||||||
\(\ds \cos 72 \degrees\) | \(=\) | \(\ds 2 \cos^2 36 \degrees - 1\) | Double Angle Formula for Cosine: Corollary 1 | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds u\) | \(=\) | \(\ds 2 v^2 - 1\) | substituting for $u$ and $v$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds u + v\) | \(=\) | \(\ds 2 \paren {v^2 - u^2}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \paren {v + u} \paren {v - u}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 1\) | \(=\) | \(\ds 2 \paren {v - u}\) | dividing both sides by $\paren {v + u}$ | ||||||||||
\(\ds \) | \(=\) | \(\ds 2 v - 4 v^2 + 2\) | substituting $u = 2 v^2 - 1$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {2 v}^2\) | \(=\) | \(\ds 2 v + 1\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 v\) | \(=\) | \(\ds \phi\) | Square of Golden Mean equals One plus Golden Mean |
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.8$: Fibonacci Numbers: Exercise $19$