Cosine of Complex Number

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.

Then:

$\cos \left({a + b i}\right) = \cos a \cosh b - i \sin a \sinh b$

where:

$\cos$ denotes the cosine function (real and complex)
$\sin$ denotes the real sine function
$\sinh$ denotes the hyperbolic sine function
$\cosh$ denotes the hyperbolic cosine function


Proof 1

\(\ds \cos \paren {a + b i}\) \(=\) \(\ds \cos a \cos \paren {b i} - \sin a \sin \paren {b i}\) Cosine of Sum
\(\ds \) \(=\) \(\ds \cos a \cosh b - \sin a \sin \paren {b i}\) Hyperbolic Cosine in terms of Cosine
\(\ds \) \(=\) \(\ds \cos a \cosh b - i \sin a \sinh b\) Hyperbolic Sine in terms of Sine

$\blacksquare$


Proof 2

\(\ds \cos a \cosh b - i \sin a \sinh b\) \(=\) \(\ds \frac {e^{i a} + e^{-i a} } 2 \frac {e^b + e^{-b} } 2 - i \frac {e^{i a} - e^{-i a} } {2 i} \frac {e^b - e^{-b} } 2\) Euler's Cosine Identity, Definition of Hyperbolic Cosine, Euler's Sine Identity, Definition of Hyperbolic Sine
\(\ds \) \(=\) \(\ds \frac {e^{b + i a} + e^{-b + i a} + e^{b - i a} + e^{-b - i a} - e^{b + i a} + e^{-b + i a} + e^{b - i a} - e^{-b - i a} } 4\) simplifying
\(\ds \) \(=\) \(\ds \frac {e^{-b + i a} + e^{b - i a} } 2\) simplifying
\(\ds \) \(=\) \(\ds \frac {e^{i \paren {a + b i} } + e^{-i \paren {a + b i} } } 2\)
\(\ds \) \(=\) \(\ds \map \cos {a + b i}\) Euler's Cosine Identity

$\blacksquare$


Also see