Cosine of Integer Multiple of Argument/Formulation 9

From ProofWiki
Jump to navigation Jump to search

Theorem

For $n \in \Z_{>1}$:

$\cos n \theta = \map \sin {\paren {n - 1} \theta} \paren {a_0 + \cfrac 1 {a_1 + \cfrac 1 {a_2 + \cfrac 1 {\ddots \cfrac {} {a_{n - r} } } } } }$

where:

$r = \begin {cases} 1 & : \text {$n$ is even} \\ 2 & : \text {$n$ is odd} \end {cases}$
$a_k = \begin {cases} -2 \sin \theta & : \text {$k$ is even and $k < n - 1$} \\ 2 \sin \theta & : \text {$k$ is odd} \\ \sin \theta & : k = n - 1 \end {cases}$


Proof

\(\ds \map \cos {n \theta}\) \(=\) \(\ds \paren {-2 \sin \theta } \map \sin {\paren {n - 1 } \theta} + \map \cos {\paren {n - 2 } \theta}\) Line 1: Cosine of Integer Multiple of Argument/Formulation 6
\(\ds \) \(=\) \(\ds \map \sin {\paren {n - 1 } \theta} \paren { -2 \sin \theta + \frac {\map \cos {\paren {n - 2 } \theta} } {\map \sin {\paren {n - 1 } \theta} } }\) Line 2: Factor out $\map \sin {\paren {n - 1 } \theta}$
\(\ds \) \(=\) \(\ds \map \sin {\paren {n - 1 } \theta} \paren { -2 \sin \theta + \cfrac 1 {\cfrac {\map \sin {\paren {n - 1 } \theta} } {\map \cos {\paren {n - 2 } \theta} } } }\) Line 3: Move the numerator to the denominator
\(\ds \) \(=\) \(\ds \map \sin {\paren {n - 1 } \theta} \paren { -2 \sin \theta + \cfrac 1 {\cfrac {\paren {2 \sin \theta } \map \cos {\paren {n - 2 } \theta} + \map \sin {\paren {n - 3 } \theta} } {\map \cos {\paren {n - 2 } \theta} } } }\) Line 4: Sine of Integer Multiple of Argument/Formulation 6
\(\ds \) \(=\) \(\ds \map \sin {\paren {n - 1 } \theta} \paren { -2 \sin \theta + \cfrac 1 {2 \sin \theta + \cfrac {\map \sin {\paren {n - 3 } \theta} } {\map \cos {\paren {n - 2 } \theta} } } }\) Line 5: Simplify expression
\(\ds \) \(=\) \(\ds \map \sin {\paren {n - 1 } \theta} \paren { -2 \sin \theta + \cfrac 1 {2 \sin \theta + \cfrac 1 {\cfrac {\map \cos {\paren {n - 2 } \theta} } {\map \sin {\paren {n - 3 } \theta} } } } }\) Line 6: Move the numerator to the denominator
\(\ds \) \(=\) \(\ds \map \sin {\paren {n - 1 } \theta} \paren { -2 \sin \theta + \cfrac 1 {2 \sin \theta + \cfrac 1 {\cfrac {\paren {-2 \sin \theta } \map \sin {\paren {n - 3 } \theta} + \map \cos {\paren {n - 4 } \theta} } {\map \sin {\paren {n - 3} \theta} } } } }\) Line 7: Cosine of Integer Multiple of Argument/Formulation 6
\(\ds \) \(=\) \(\ds \map \sin {\paren {n - 1 } \theta} \paren { -2 \sin \theta + \cfrac 1 {2 \sin \theta + \cfrac 1 {-2 \sin \theta + \cfrac {\map \cos {\paren {n - 4 } \theta} } {\map \sin {\paren {n - 3} \theta} } } } }\) Line 8: Simplify expression


By comparing Line 2 to Line 8, we see that:



\(\ds \frac {\map \cos {\paren {n - 2 k} \theta} } {\map \sin {\paren {n - \paren {2 k - 1} } \theta} }\) \(=\) \(\ds \paren {\cfrac 1 {2 \sin \theta + \cfrac 1 {-2 \sin \theta + \cfrac {\map \cos {\paren {n - 2 \paren {k + 1 } } \theta} } {\map \sin {\paren {n - \paren {2 \paren {k + 1} - 1 } } \theta} } } } }\)


Therefore, the terminal denominator will be:

$-2 \sin \theta + \dfrac {\map \cos {\paren {n - 2 k} \theta} } {\map \sin {\paren {n - \paren {2 k - 1} } \theta} }$


Assume $n$ even:

$n = 2 k$
\(\ds \) \(\) \(\ds -2 \sin \theta + \frac {\map \cos {\paren {2 k - 2 k} \theta} } {\map \sin {\paren {2 k - \paren {2 k - 1 } } \theta} }\)
\(\ds \) \(=\) \(\ds -2 \sin \theta + \frac {\cos 0} {\sin \theta}\)
\(\ds \) \(=\) \(\ds -2 \sin \theta + \frac 1 {\sin \theta}\) Final term is $\sin \theta$


Assume $n$ odd:

$n = 2 k + 1$
\(\ds \) \(\) \(\ds -2 \sin \theta + \frac {\map \cos {\paren {2 k + 1 - 2 k} \theta} } {\map \sin {\paren {2 k + 1 - \paren {2 k - 1} } \theta} }\)
\(\ds \) \(=\) \(\ds -2 \sin \theta + \frac {\cos \theta} {\sin 2 \theta}\)
\(\ds \) \(=\) \(\ds -2 \sin \theta + \cfrac 1 {\cfrac {\sin 2 \theta} {\cos \theta} }\)
\(\ds \) \(=\) \(\ds -2 \sin \theta + \cfrac 1 {\cfrac {2 \sin \theta \cos \theta} {\cos \theta} }\) Double Angle Formulas/Sine
\(\ds \) \(=\) \(\ds -2 \sin \theta + \frac 1 {2 \sin \theta}\) Final term is $2 \sin \theta$

Therefore:

$\cos n \theta = \map \cos {\paren {n - 1} \theta} \paren {a_0 + \cfrac 1 {a_1 + \cfrac 1 {a_2 + \cfrac 1 {\ddots \cfrac {} {a_{n - r} } } } } }$

where:

$r = \begin {cases} 1 & : \text {$n$ is even} \\ 2 & : \text {$n$ is odd} \end {cases}$
$a_k = \begin {cases} -2 \sin \theta & : \text {$k$ is even and $k < n - 1$} \\ 2 \sin \theta & : \text {$k$ is odd} \\ \sin \theta & : k = n - 1 \end {cases}$

$\blacksquare$


Examples

Cosine of Quintuple Angle

$\map \cos {5 \theta } = \map \sin {4 \theta} \paren { -2 \sin \theta + \cfrac 1 {2 \sin \theta + \cfrac 1 {-2\sin \theta + \cfrac 1 {2 \sin \theta } }} }$


Cosine of Sextuple Angle

$\map \cos {6 \theta } = \map \sin {5 \theta} \paren { -2 \sin \theta + \cfrac 1 {2 \sin \theta + \cfrac 1 {-2\sin \theta + \cfrac 1 {2 \sin \theta + \cfrac 1 {-2\sin \theta + \cfrac 1 {\sin \theta } } } }} }$