Cosine of i

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cos i = \dfrac e 2 + \dfrac 1 {2 e}$

where $\cos$ denotes the complex cosine function and $i$ is the imaginary unit.


Proof 1

We have:

\(\text {(1)}: \quad\) \(\ds \cos i + i \sin i\) \(=\) \(\ds e^{i \times i}\) Euler's Formula
\(\ds \) \(=\) \(\ds e^{-1}\) Definition of Imaginary Unit
\(\ds \) \(=\) \(\ds \frac 1 e\)

Also:

\(\text {(2)}: \quad\) \(\ds \cos i - i \sin i\) \(=\) \(\ds \map \cos {-i} + i \map \sin {-i}\) Cosine Function is Even and Sine Function is Odd
\(\ds \) \(=\) \(\ds e^{i \times \paren {-i} }\) Euler's Formula
\(\ds \) \(=\) \(\ds e^1\) Definition of Imaginary Unit
\(\ds \) \(=\) \(\ds e\)


Then from $(1) + (2)$:

\(\ds 2 \cos i\) \(=\) \(\ds \frac 1 e + e\)
\(\ds \leadsto \ \ \) \(\ds \cos i\) \(=\) \(\ds \frac 1 2 \paren {\frac 1 e + e}\)
\(\ds \) \(=\) \(\ds \frac e 2 + \frac 1 {2 e}\)

$\blacksquare$


Proof 2

\(\ds \cos i\) \(=\) \(\ds \cosh 1\) Hyperbolic Cosine in terms of Cosine
\(\ds \) \(=\) \(\ds \frac {e^1 + e^{-1} } 2\) Definition of Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \frac e 2 + \frac 1 {2 e}\)

$\blacksquare$


Also see