Cotangent of Sum of Three Angles

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \cot {A + B + C} = \dfrac {\cot A + \cot B + \cot C - \cot A \cot B \cot C} {1 - \cot B \cot C - \cot C \cot A - \cot A \cot B}$


Proof

\(\ds \map \cos {A + B + C}\) \(=\) \(\ds \cos A \cos B \cos C - \sin A \sin B \cos C - \sin A \cos B \sin C - \cos A \sin B \sin C\) Cosine of Sum of Three Angles
\(\ds \map \sin {A + B + C}\) \(=\) \(\ds \sin A \cos B \cos C + \cos A \sin B \cos C + \cos A \cos B \sin C - \sin A \sin B \sin C\) Sine of Sum of Three Angles
\(\ds \leadsto \ \ \) \(\ds \map \cot {A + B + C}\) \(=\) \(\ds \dfrac {\cos A \cos B \cos C - \sin A \sin B \cos C - \sin A \cos B \sin C - \cos A \sin B \sin C} {\sin A \cos B \cos C + \cos A \sin B \cos C + \cos A \cos B \sin C - \sin A \sin B \sin C}\) Cotangent is Cosine divided by Sine
\(\ds \) \(=\) \(\ds \dfrac {\frac {\cos A \cos B \cos C} {\sin A \sin B \sin C} - \frac {\sin A \sin B \cos C} {\sin A \sin B \sin C} - \frac {\sin A \cos B \sin C} {\sin A \sin B \sin C} - \frac {\cos A \sin B \sin C} {\sin A \sin B \sin C} } {\frac {\sin A \cos B \cos C} {\sin A \sin B \sin C} + \frac {\cos A \sin B \cos C} {\sin A \sin B \sin C} + \frac {\cos A \cos B \sin C} {\sin A \sin B \sin C} - \frac {\sin A \sin B \sin C} {\sin A \sin B \sin C} }\) dividing numerator and denominator by $\sin A \sin B \sin C$
\(\ds \) \(=\) \(\ds \dfrac {\cot A + \cot B + \cot C - \cot A \cot B \cot C} {1 - \cot B \cot C - \cot C \cot A - \cot A \cot B}\) Cotangent is Cosine divided by Sine and simplifying

$\blacksquare$


Also see