Cube Root of Unity if Modulus is 1 and Real Part is Minus Half

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z \in \C$ be a complex number such that:

$\cmod z = 1$
$\Re \paren z = -\dfrac 1 2$

where:

$\cmod z$ denotes the complex modulus of $z$
$\Re \paren z$ denotes the real part of $z$.

Then:

$z^3 = 1$


Proof

Let $z = x + i y$.

From $\Re \paren z = -\dfrac 1 2$:

$x = -\dfrac 1 2$

by definition of the real part of $z$.


Then:

\(\ds \cmod z\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds x^2 + y^2\) \(=\) \(\ds 1\) Definition of Complex Modulus
\(\ds \leadsto \ \ \) \(\ds \paren {-\dfrac 1 2}^2 + y^2\) \(=\) \(\ds 1\) substituting for $x$
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \sqrt {1 - \dfrac 1 4}\) simplifying
\(\ds \) \(=\) \(\ds \pm \dfrac {\sqrt 3} 2\)

Thus:

$z = -\dfrac 1 2 \pm \dfrac {\sqrt 3} 2$

and the result follows from Cube Roots of Unity.

$\blacksquare$


Sources