Complex Roots of Unity/Examples/Cube Roots

From ProofWiki
Jump to navigation Jump to search

Example of Complex Roots of Unity

The complex cube roots of unity are the elements of the set:

$U_3 = \set {z \in \C: z^3 = 1}$


They are:

\(\ds \) \(\) \(\, \ds e^{0 i \pi / 3} \, \) \(\, \ds = \, \) \(\ds 1\)
\(\ds \omega\) \(=\) \(\, \ds e^{2 i \pi / 3} \, \) \(\, \ds = \, \) \(\ds -\frac 1 2 + \frac {i \sqrt 3} 2\)
\(\ds \omega^2\) \(=\) \(\, \ds e^{4 i \pi / 3} \, \) \(\, \ds = \, \) \(\ds -\frac 1 2 - \frac {i \sqrt 3} 2\)


The notation $\omega$ for, specifically, the complex cube roots of unity is conventional.


Conjugate Form

The Cube Roots of Unity can be expressed in the form:

$U_3 = \set {1, \omega, \overline \omega}$

where:

$\omega = -\dfrac 1 2 + \dfrac {i \sqrt 3} 2$
$\overline \omega$ denotes the complex conjugate of $\omega$.


Proof

\(\ds z^3 - 1\) \(=\) \(\ds \paren {z - 1} \paren {z^2 + z + 1}\) Difference of Two Cubes/Corollary
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds 1\)
\(\, \ds \text { or } \, \) \(\ds z^2 + z + 1\) \(=\) \(\ds 0\)

Then:

\(\ds z^2 + z + 1\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds \dfrac {-1 \pm \sqrt {1^2 - 4 \times 1 \times 1} } {2 \times 1}\) Quadratic Formula
\(\ds \) \(=\) \(\ds -\frac 1 2 \pm i \frac {\sqrt 3} 2\) simplifying

$\blacksquare$


Sources