Cumulative Distribution Function as Integral of Probability Density Function
Jump to navigation
Jump to search
Theorem
Let $\struct {\Omega, \Sigma, \Pr}$ be a probability space.
Let $X$ be an absolutely continuous random variable.
Let $f_X$ be a probability density function for $X$.
Let $F_X$ be the cumulative distribution function for $X$.
Let $\map \BB \R$ be the Borel $\sigma$-algebra on $\R$.
Let $\lambda$ be the Lebesgue measure on $\struct {\R, \map \BB \R}$.
Then:
- $\ds \map {F_X} x = \int_{-\infty}^x f_X \rd \lambda$
for each $x \in \R$, where $\ds \int_{-\infty}^x f_X \rd \lambda$ denotes the Lebesgue integral of $f$ over $\hointl {-\infty} x$.
Proof
Let $P_X$ be the probability distribution of $X$.
Since $f_X$ is a probability density function for $X$, $f_X$ is a Radon-Nikodym derivative of $P_X$ with respect to $\lambda$.
Then, we have:
\(\ds \map {F_X} x\) | \(=\) | \(\ds \map \Pr {X \le x}\) | Definition of Cumulative Distribution Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \Pr {X \in \hointl {-\infty} x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {P_X} {\hointl {-\infty} x}\) | Definition of Probability Distribution | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_{\hointl {-\infty} x} \map {f_X} t \rd \map \lambda t\) | Definition of Radon-Nikodym Derivative | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_{-\infty}^x f_X \rd \lambda\) |
$\blacksquare$