Cumulative Distribution Function is Increasing
Jump to navigation
Jump to search
Theorem
Let $\struct {\Omega, \Sigma, \Pr}$ be a probability space.
Let $X$ be a random variable on $\struct {\Omega, \Sigma, \Pr}$.
Let $F_X$ be the cumulative distribution function.
Then:
- $F_X$ is an increasing function.
Proof
Let $x, y \in \R$ have $x \le y$.
Note that if $\omega \in \Omega$ is such that:
- $\map X \omega \le x$
then:
- $\map X \omega \le y$
so:
- $\set {\omega \in \Omega : \map X \omega \le x} \subseteq \set {\omega \in \Omega : \map X \omega \le y}$
From Measure is Monotone, we then have:
- $\map \Pr {X \le x} \le \map \Pr {X \le y}$
That is, from the definition of cumulative distribution function, we have:
- $\map {F_X} x \le \map {F_X} y$
whenever $x \le y$.
So:
- $F_X$ is an increasing function.
$\blacksquare$