De Morgan's Laws (Set Theory)/Relative Complement/Complement of Union

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S, T_1, T_2$ be sets such that $T_1, T_2$ are both subsets of $S$.


Then, using the notation of the relative complement:

$\relcomp S {T_1 \cup T_2} = \relcomp S {T_1} \cap \relcomp S {T_2}$


Proof 1

Let $T_1, T_2 \subseteq S$.

Then from Union is Smallest Superset:

$T_1 \cup T_2 \subseteq S$

Hence:

\(\ds \relcomp S {T_1 \cup T_2}\) \(=\) \(\ds S \setminus \paren {T_1 \cup T_2}\) Definition of Relative Complement
\(\ds \) \(=\) \(\ds \paren {S \setminus T_1} \cap \paren {S \setminus T_2}\) De Morgan's Laws: Difference with Union
\(\ds \) \(=\) \(\ds \relcomp S {T_1} \cap \relcomp S {T_2}\) Definition of Relative Complement

$\blacksquare$


Proof 2

Let $x \in S$ througout.

\(\ds \) \(\) \(\ds x \in \relcomp S {T_1 \cup T_2}\)
\(\ds \) \(\leadsto\) \(\ds x \notin \paren {T_1 \cup T_2}\) Definition of Relative Complement
\(\ds \) \(\leadsto\) \(\ds \neg \paren {x \in T_1 \lor x \in T_2}\) Definition of Set Union
\(\ds \) \(\leadsto\) \(\ds x \notin T_1 \land x \notin T_2\) De Morgan's Laws: Conjunction of Negations
\(\ds \) \(\leadsto\) \(\ds x \in \relcomp S {T_1} \land x \in \relcomp S {T_2}\) Definition of Relative Complement
\(\ds \) \(\leadsto\) \(\ds x \in \relcomp S {T_1} \cap \relcomp S {T_2}\) Definition of Set Intersection
\(\ds \) \(\leadsto\) \(\ds \relcomp S {T_1 \cup T_2} \subseteq \relcomp S {T_1} \cap \relcomp S {T_2}\) Definition of Subset


\(\ds \) \(\) \(\ds x \in \relcomp S {T_1} \cap \relcomp S {T_2}\)
\(\ds \) \(\leadsto\) \(\ds x \in \relcomp S {T_1} \land x \in \relcomp S {T_2}\) Definition of Set Intersection
\(\ds \) \(\leadsto\) \(\ds x \notin T_1 \land x \notin T_2\) Definition of Relative Complement
\(\ds \) \(\leadsto\) \(\ds \neg \paren {x \in T_1 \lor x \in T_2}\) De Morgan's Laws: Conjunction of Negations
\(\ds \) \(\leadsto\) \(\ds x \notin \paren {T_1 \cup T_2}\) Definition of Set Union
\(\ds \) \(\leadsto\) \(\ds x \in \relcomp S {T_1 \cup T_2}\) Definition of Relative Complement
\(\ds \) \(\leadsto\) \(\ds \relcomp S {T_1} \cap \relcomp S {T_2} \subseteq \relcomp S {T_1 \cup T_2}\) Definition of Set Intersection


By definition of set equality:

$\relcomp S {T_1 \cup T_2} = \relcomp S {T_1} \cap \relcomp S {T_2}$

$\blacksquare$


Source of Name

This entry was named for Augustus De Morgan.


Sources