De Morgan's Laws (Set Theory)/Set Difference/Difference with Intersection/Corollary

From ProofWiki
Jump to navigation Jump to search

Corollary to De Morgan's Laws: Difference with Intersection

Let $S, T_1, T_2$ be sets.

Suppose that $T_1 \subseteq S$.


Then:

$S \setminus \paren {T_1 \cap T_2} = \paren {S \setminus T_1} \cup \paren {T_1 \setminus T_2}$


Proof

\(\ds S \setminus \paren {T_1 \cap T_2}\) \(=\) \(\ds \paren {S \setminus T_1} \cup \paren {S \setminus T_2}\) De Morgan's Laws: Difference with Intersection
\(\ds \) \(=\) \(\ds \paren {S \setminus T_1} \cup \paren {\paren {\paren {S \setminus T_1} \cup \paren {S \cap T_1} } \setminus T_2}\) Set Difference Union Intersection
\(\ds \) \(=\) \(\ds \paren {S \setminus T_1} \cup \paren {\paren {S \setminus T_1} \setminus T_2} \cup \paren {\paren {S \cap T_1} \setminus T_2}\) Set Difference is Right Distributive over Union
\(\ds \) \(=\) \(\ds \paren {S \setminus T_1} \cup \paren {\paren {S \setminus T_1} \setminus T_2} \cup \paren {T_1 \setminus T_2}\) Intersection with Subset is Subset: $T_1 \subseteq S$
\(\ds \) \(=\) \(\ds \paren {S \setminus T_1} \cup \paren {T_1 \setminus T_2}\) Set Difference Union First Set is First Set

$\blacksquare$