Definite Integral from 0 to Half Pi of Odd Power of Sine x/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \int_0^{\frac \pi 2} \sin^{2 n + 1} x \rd x\) \(=\) \(\ds \dfrac {\paren {2^n n!}^2} {\paren {2 n + 1}!}\)
\(\ds \) \(=\) \(\ds \dfrac {2 \cdot 4 \cdot 6 \cdots 2 n} {3 \cdot 5 \cdot 7 \cdots \paren {2 n + 1} }\)

for $n \in \Z_{>0}$.


Proof



Let $I_n = \ds \int_0^{\frac \pi 2} \sin^n x \rd x$.


Then:

\(\ds I_{2 n + 1}\) \(=\) \(\ds \frac {2 n} {2 n + 1} I_{2 n - 1}\) Reduction Formula for Definite Integral of Power of Sine
\(\ds \) \(=\) \(\ds \frac {2 n \paren {2 n - 2} } {\paren {2 n + 1} \paren {2 n - 1} } I_{2 n - 3}\) Reduction Formula for Definite Integral of Power of Sine again
\(\ds \) \(=\) \(\ds \frac {2 n \paren {2 n - 2} \dotsm 2} {\paren {2 n + 1} \paren {2 n - 1} \dotsm 3} I_1\) Reduction Formula for Definite Integral of Power of Sine until the end
\(\ds \) \(=\) \(\ds \frac {2 n \paren {2 n - 2} \dotsm 2} {\paren {2 n + 1} \paren {2 n - 1} \dotsm 3} \int_0^{\pi / 2} \sin x \rd x\) Definition of $I_n$
\(\ds \) \(=\) \(\ds \frac {2 n \paren {2 n - 2} \dotsm 2} {\paren {2 n + 1} \paren {2 n - 1} \dotsm 3} \bigintlimits {-\cos x} 0 {\pi / 2}\) Primitive of Sine Function
\(\ds \) \(=\) \(\ds \frac {2 n \paren {2 n - 2} \dotsm 2} {\paren {2 n + 1} \paren {2 n - 1} \dotsm 3} \paren {0 - \paren {-1} }\) Cosine of Right Angle and Cosine of Zero is One
\(\ds \) \(=\) \(\ds \frac {2 n \paren {2 n - 2} \dotsm 2} {\paren {2 n + 1} \paren {2 n - 1} \dotsm 3}\)
\(\ds \) \(=\) \(\ds \frac {\paren {2 n}^2 \paren {2 n - 2}^2 \dotsm 2^2} {\paren {2 n + 1} \paren {2 n} \paren {2 n - 1} \paren {2 n - 2} \paren {2 n - 3} \dotsm 3 \cdot 2}\) multiplying top and bottom by top
\(\ds \) \(=\) \(\ds \frac {\paren {2 n}^2 n^2 \paren {n - 1}^2 \dotsm 1^2} {\paren {2 n + 1} \paren {2 n} \paren {2 n - 1} \paren {2 n - 2} \paren {2 n - 3} \dotsm 3 \cdot 2}\) extracting factor of $\paren {2^n}^2$ from the top
\(\ds \) \(=\) \(\ds \frac {\paren {2^n n!}^2} {\paren {2 n + 1}!}\) Definition of Factorial

$\blacksquare$