Definite Integral from 0 to Half Pi of Sine x by Logarithm of Sine x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^{\pi/2} \sin x \map \ln {\sin x} \rd x = \ln 2 - 1$


Proof

\(\ds \int_0^{\pi/2} \sin x \map \ln {\sin x} \rd x\) \(=\) \(\ds \intlimits {\cos x \paren {1 - \map \ln {\sin x} } + \map \ln {\tan \frac x 2} } 0 {\pi/2}\) Primitive of $\sin x \map \ln {\sin x}$
\(\ds \) \(=\) \(\ds \cos \frac \pi 2 \paren {1 - \map \ln {\sin \frac \pi 2} } + \map \ln {\tan \frac \pi 4} - \cos 0 + \lim_{x \mathop \to 0^+} \paren {\map \ln {\sin x} - \map \ln {\tan \frac x 2} }\)
\(\ds \) \(=\) \(\ds -1 + \lim_{x \mathop \to 0^+} \paren {\map \ln {\sin x} - \map \ln {\tan \frac x 2} }\) Cosine of Right Angle, Tangent of $45 \degrees$, Natural Logarithm of 1 is 0, Cosine of Zero is One

It remains to compute:

$\ds \lim_{x \mathop \to 0^+} \paren {\map \ln {\sin x} - \map \ln {\tan \frac x 2} }$

We have:

\(\ds \lim_{x \mathop \to 0^+} \paren {\map \ln {\sin x} - \map \ln {\tan \frac x 2} }\) \(=\) \(\ds \lim_{x \mathop \to 0^+} \paren {\map \ln {2 \sin \frac x 2 \cos \frac x 2} - \map \ln {\sin \frac x 2} + \map \ln {\cos \frac x 2} }\) Double Angle Formula for Sine, Definition of Real Tangent Function, Difference of Logarithms
\(\ds \) \(=\) \(\ds \lim_{x \mathop \to 0^+} \paren {\ln 2 + \map \ln {\sin \frac x 2} + \map \ln {\cos \frac x 2} - \map \ln {\sin \frac x 2} + \map \ln {\cos \frac x 2} }\) Sum of Logarithms
\(\ds \) \(=\) \(\ds \ln 2 + 2 \lim_{x \mathop \to 0^+} \map \ln {\cos \frac x 2}\) Sum Rule for Limits of Real Functions
\(\ds \) \(=\) \(\ds \ln 2 + 2 \map \ln {\lim_{x \mathop \to 0^+} \cos \frac x 2}\)
\(\ds \) \(=\) \(\ds \ln 2 + 2 \ln 1\) Cosine of Zero is One
\(\ds \) \(=\) \(\ds \ln 2\) Natural Logarithm of 1 is 0

giving:

$\ds \int_0^{\pi/2} \sin x \map \ln {\sin x} \rd x = \ln 2 - 1$

$\blacksquare$


Sources