Definite Integral to Infinity of Exponential of -a x^2 by Cosine of b x
Jump to navigation
Jump to search
Theorem
- $\ds \int_0^\infty e^{-a x^2} \cos b x \rd x = \frac 1 2 \sqrt {\frac \pi a} \map \exp {-\frac {b^2} {4 a} }$
where $a$ is a strictly positive real number.
Proof
Fix $a$ and define:
- $\ds \map I b = \int_0^\infty e^{-a x^2} \cos b x \rd x$
for all $b \in \R$.
Then, we have:
\(\ds \map {I'} b\) | \(=\) | \(\ds \frac \d {\d b} \paren {\int_0^\infty e^{-a x^2} \cos b x \rd x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^\infty \frac \partial {\partial b} \paren {e^{-a x^2} \cos b x} \rd x\) | Definite Integral of Partial Derivative | |||||||||||
\(\ds \) | \(=\) | \(\ds -\int_0^\infty \paren {x e^{-a x^2} } \sin b x \rd x\) | Derivative of $\cos a x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\paren {\intlimits {-\frac 1 {2 a} e^{-a x^2} \sin b x} 0 \infty - b \int_0^\infty \paren {-\frac 1 {2 a} e^{-a x^2} } \cos b x \rd x}\) | Integration by Parts |
Note that:
\(\ds \size {\frac 1 {2 a} e^{-a x^2} \sin b x}\) | \(\le\) | \(\ds \frac 1 {2 a} e^{-a x^2}\) | noting that $\size {\sin x} \le 1$ | |||||||||||
\(\ds \) | \(\to\) | \(\ds 0\) | Exponential Tends to Zero and Infinity |
So:
\(\ds -\paren {\intlimits {-\frac 1 {2 a} e^{-a x^2} \sin b x} 0 \infty - b \int_0^\infty \paren {-\frac 1 {2 a} e^{-a x^2} } \cos b x \rd x}\) | \(=\) | \(\ds -\frac b {2 a} \int_0^\infty e^{-a x^2} \cos b x \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\frac b {2 a} \map I b\) |
We then have:
- $\dfrac {\map {I'} b} {\map I b} = -\dfrac b {2 a}$
Integrating, by Primitive of Function under its Derivative and Primitive of Constant:
- $\ln \size {\map I b} = -\dfrac {b^2} {4 a} + C$
for some $C \in \R$.
![]() | This needs considerable tedious hard slog to complete it. In particular: This obviously only gives us an expression for $\ln \size {\map I b}$, we then need to determine that $\map I b > 0$ which seems nontrivial To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
So:
- $\map I b = A \map \exp {-\dfrac {b^2} {4 a} }$
for some $A \in \R$.
We have:
\(\ds \map I 0\) | \(=\) | \(\ds \int_0^\infty e^{-a x^2} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \sqrt {\frac \pi a}\) | Definite Integral to Infinity of $e^{-a x^2}$ |
on the other hand we have:
\(\ds \map I 0\) | \(=\) | \(\ds A \map \exp 0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds A\) | Exponential of Zero |
So we have:
- $\ds\map I b = \int_0^\infty e^{-a x^2} \cos b x \rd x = \frac 1 2 \sqrt {\frac \pi a} \map \exp {-\frac {b^2} {4 a} }$
for all $b \in \R$ as required.
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 15$: Definite Integrals involving Exponential Functions: $15.73$