Definite Integral to Infinity of Exponential of -x by Logarithm of x

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\ln t$ denote the natural logarithm function for real $t > 0$.

Let $e^{-t}$ denote the real exponential.


Then:

$\ds \int_{0^+}^{\mathop \to +\infty} \ln t \, e^{-t} \rd t = - \gamma$

where the left hand side is an improper integral, and $\gamma$ is the Euler-Mascheroni Constant.


Proof

\(\ds \int_{0^+}^{ \mathop \to +\infty} \ln t \, e^{-t} \rd t\) \(=\) \(\ds \int_{0^+}^{ \mathop \to +\infty} t^{1 - 1} \ln t \, e^{-t} \rd t\)
\(\ds \) \(=\) \(\ds \map {\Gamma'} 1\) Derivative of Gamma Function
\(\ds \) \(=\) \(\ds -\gamma\) Derivative of Gamma Function at $1$

$\blacksquare$


Sources