Definition:Absolutely Convergent Series/Complex Numbers

From ProofWiki
Jump to navigation Jump to search


Let $S = \ds \sum_{n \mathop = 1}^\infty a_n$ be a series in the complex number field $\C$.

Then $S$ is absolutely convergent if and only if:

$\ds \sum_{n \mathop = 1}^\infty \cmod {a_n}$ is convergent

where $\cmod {a_n}$ denotes the complex modulus of $a_n$.

Also see


Example: $\paren {\dfrac z {1 - z} }^n$

The complex series defined as:

$\ds S = \sum_{n \mathop = 1}^\infty \paren {\dfrac z {1 - z} }^n$

is absolutely convergent, provided $\Re \paren z < \dfrac 1 2$.