Definition:Addition/Real Numbers
Jump to navigation
Jump to search
Definition
The addition operation in the domain of real numbers $\R$ is written $+$.
From the definition, the real numbers are the set of all equivalence classes $\eqclass {\sequence {x_n} } {}$ of Cauchy sequences of rational numbers.
Let $x = \eqclass {\sequence {x_n} } {}, y = \eqclass {\sequence {y_n} } {}$, where $\eqclass {\sequence {x_n} } {}$ and $\eqclass {\sequence {y_n} } {}$ are such equivalence classes.
Then $x + y$ is defined as:
- $\eqclass {\sequence {x_n} } {} + \eqclass {\sequence {y_n} } {} = \eqclass {\sequence {x_n + y_n} } {}$
Also see
Sources
- 1964: Iain T. Adamson: Introduction to Field Theory ... (previous) ... (next): Chapter $\text {I}$: Elementary Definitions: $\S 1$. Rings and Fields
- 1971: Wilfred Kaplan and Donald J. Lewis: Calculus and Linear Algebra ... (previous) ... (next): Introduction: Review of Algebra, Geometry, and Trigonometry: $\text{0-1}$: The Real Numbers