Definition:Language of Propositional Logic/Alphabet
< Definition:Language of Propositional Logic(Redirected from Definition:Alphabet of Propositional Logic)
Jump to navigation
Jump to search
Definition
The alphabet $\AA$ of the language of propositional logic $\LL_0$ is defined as follows:
Letters
The letters of $\LL_0$, called propositional symbols, can be any infinite collection $\PP_0$ of arbitrary symbols.
![]() | This article, or a section of it, needs explaining. In particular: "infinite collection" -- we need an informal way of referring to "infinite" without resorting to the machinery of set theory. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Explain}} from the code. |
It is usual to specify them as a limited subset of the English alphabet with appropriate subscripts.
A typical set of propositional symbols would be, for example:
- $\PP_0 = \set {p_1, p_2, p_3, \ldots, p_n, \ldots}$
Signs
The signs of the language of propositional logic come in two categories:
Brackets
\(\ds \bullet \ \ \) | \(\ds (\) | \(:\) | \(\ds \)the left bracket sign\(\) | |||||||||||
\(\ds \bullet \ \ \) | \(\ds )\) | \(:\) | \(\ds \)the right bracket sign\(\) |
Connectives
\(\ds \bullet \ \ \) | \(\ds \land\) | \(:\) | \(\ds \)the conjunction sign\(\) | |||||||||||
\(\ds \bullet \ \ \) | \(\ds \lor\) | \(:\) | \(\ds \)the disjunction sign\(\) | |||||||||||
\(\ds \bullet \ \ \) | \(\ds \implies\) | \(:\) | \(\ds \)the conditional sign\(\) | |||||||||||
\(\ds \bullet \ \ \) | \(\ds \iff\) | \(:\) | \(\ds \)the biconditional sign\(\) | |||||||||||
\(\ds \bullet \ \ \) | \(\ds \neg\) | \(:\) | \(\ds \)the negation sign\(\) | |||||||||||
\(\ds \bullet \ \ \) | \(\ds \top\) | \(:\) | \(\ds \)the tautology sign\(\) | |||||||||||
\(\ds \bullet \ \ \) | \(\ds \bot\) | \(:\) | \(\ds \)the contradiction sign\(\) |
These comprise:
- The nullary connectives $\top$ and $\bot$, representing the canonical tautology and contradiction, respectively
- The unary connective $\neg$, representing negation
- The binary connectives $\land, \lor, \implies$ and $\iff$, representing, respectively, conjunction, disjunction, implication and biconditional.
Sources
- 1965: E.J. Lemmon: Beginning Logic ... (previous) ... (next): Chapter $2$: The Propositional Calculus $2$: $1$ Formation Rules
- 1996: H. Jerome Keisler and Joel Robbin: Mathematical Logic and Computability ... (previous) ... (next): $\S 1.2$: Syntax of Propositional Logic
- 2000: Michael R.A. Huth and Mark D. Ryan: Logic in Computer Science: Modelling and reasoning about systems: $\S 1.3$