Definition:B-Algebra

Definition

Let $\struct {X, \circ}$ be an algebraic structure.

$\struct {X, \circ}$ is a $B$-algebra if and only if $\struct {X, \circ}$ satisfies the $B$-algebra axioms:

 $(\text {AC})$ $:$ $\ds \forall x, y \in X:$ $\ds x \circ y \in X$ $(\text A 0)$ $:$ $\ds \exists 0 \in X$ $(\text A 1)$ $:$ $\ds \forall x \in X:$ $\ds x \circ x = 0$ $(\text A 2)$ $:$ $\ds \forall x \in X:$ $\ds x \circ 0 = x$ $(\text A 3)$ $:$ $\ds \forall x, y, z \in X:$ $\ds \paren {x \circ y} \circ z = x \circ \paren {z \circ \paren {0 \circ y} }$

Examples

$B$-Algebra Induced by $S_3$

This is a $B$-algebra for the finite set $\set {0, 1, 2, 3, 4, 5}$:

$\begin{array}{c|cccccc} & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 0 & 0 & 2 & 1 & 3 & 4 & 5 \\ 1 & 1 & 0 & 2 & 4 & 5 & 3 \\ 2 & 2 & 1 & 0 & 5 & 3 & 4 \\ 3 & 3 & 4 & 5 & 0 & 2 & 1 \\ 4 & 4 & 5 & 3 & 1 & 0 & 2 \\ 5 & 5 & 3 & 4 & 2 & 1 & 0 \\ \end{array}$

Also see

• Results about $B$-algebras can be found here.

Linguistic Note

A literature search has failed to reveal the origin or derivation of the term $B$-algebra.

Hence the reason for why it is called that is still under investigation.