Definition:Language of Propositional Logic/Formal Grammar/Bottom-Up Specification
< Definition:Language of Propositional Logic | Formal Grammar(Redirected from Definition:Bottom-Up Specification of Propositional Logic)
Jump to navigation
Jump to search
Definition
Part of specifying the language of propositional logic is to provide its formal grammar.
The following rules of formation constitute a bottom-up grammar for the formation of well-formed formulas (WFFs) of the language of propositional logic $\LL_0$.
- Let $\PP_0$ be the vocabulary of $\LL_0$.
- Let $\mathrm {Op} = \set {\land, \lor, \implies, \iff}$.
The rules are:
$\mathbf W: \text {TF}$ | $:$ | $\top$ is a WFF, and $\bot$ is a WFF. | |
$\mathbf W: \PP_0$ | $:$ | If $p \in \PP_0$, then $p$ is a WFF. | |
$\mathbf W: \neg$ | $:$ | If $\mathbf A$ is a WFF, then $\neg \mathbf A$ is a WFF. | |
$\mathbf W: \text {Op}$ | $:$ | If $\mathbf A$ is a WFF and $\mathbf B$ is a WFF and $\circ \in \mathrm {Op}$, then $\paren {\mathbf A \circ \mathbf B}$ is a WFF. |
Any string which can not be created by means of the above rules is not a WFF.
Examples
Example 1
The following is a WFF of propositional logic:
- $\paren {\paren {p \land q} \implies \paren {\lnot \paren {q \lor r} } }$
Sources
- 1964: Donald Kalish and Richard Montague: Logic: Techniques of Formal Reasoning ... (previous) ... (next): $\text{I}$: 'NOT' and 'IF': $\S 1$
- 1965: E.J. Lemmon: Beginning Logic ... (previous) ... (next): Chapter $2$: The Propositional Calculus $2$: $1$ Formation Rules
- 1988: Alan G. Hamilton: Logic for Mathematicians (2nd ed.) ... (previous) ... (next): $\S 1$: Informal statement calculus: $\S 1.2$: Truth functions and truth tables: Definition $1.2$
- 1996: H. Jerome Keisler and Joel Robbin: Mathematical Logic and Computability ... (previous) ... (next): $\S 1.2$: Syntax of Propositional Logic: Definition $1.2.1$
- 2000: Michael R.A. Huth and Mark D. Ryan: Logic in Computer Science: Modelling and reasoning about systems ... (previous) ... (next): $\S 1.3$: Propositional logic as a formal language: Definition $1.27$