# Definition:Bounded Minimization

## Definition

### Function

Let $f: \N^{k + 1} \to \N$ be a function.

Let $\tuple {n_1, n_2, \ldots, n_k} \in \N^k$ and let $z \in \N$ be fixed.

Then the bounded minimization operation on $f$ is written as:

$\map {\mu y \le z} {\map f {n_1, n_2, \ldots, n_k, y} = 0}$

and is specified as follows:

$\map {\mu y \le z} {\map f {n_1, n_2, \ldots, n_k, y} = 0} = \begin{cases} \text{the smallest } y \in \N \text{ such that } \map f {n_1, n_2, \ldots, n_k, y} = 0 & : \exists y \in \N: y \le z \\ z + 1 & : \text{otherwise} \end{cases}$

### Relation

Let $\map \RR {n_1, n_2, \ldots, n_k, y}$ be a $k + 1$-ary relation on $\N^{k + 1}$.

Let $\tuple {n_1, n_2, \ldots, n_k} \in \N^k$ and let $z \in \N$ be fixed.

Then the bounded minimization operation on $\RR$ is written as:

$\map {\mu y \le z} {\map \RR {n_1, n_2, \ldots, n_k, y} }$

and is specified as follows:

$\map {\mu y \le z} {\map \RR {n_1, n_2, \ldots, n_k, y} } = \begin{cases} \text{the smallest } y \in \N \text{ for which } \map \RR {n_1, n_2, \ldots, n_k, y} \text{ holds} & : \exists y \in \N: y \le z \\ z + 1 & : \text{otherwise} \end{cases}$

We can consider the definition for a function to be a special case of this.

### The no-solution case

The choice of $z + 1$ for the value when there is no solution $y$ less than or equal to $z$ is arbitrary, but convenient.

It ensures a well-defined solution for every $z$.