# Definition:Truth Table/Characteristic

## Definition

Let $\circledcirc$ be a logical connective.

The characteristic truth table for $\circledcirc$ is the truth table describing the truth function of $\circledcirc$:

$\begin{array}{|cc||c|} \hline p & q & p \circledcirc q \\ \hline \F & \F & x \\ \F & \T & x \\ \T & \F & x \\ \T & \T & x \\ \hline \end{array}$

where $x$ is replaced by either $\F$ or $\T$ as appropriate on each row.

The characteristic truth tables of the various logical connectives are listed below.

### Logical Negation

The characteristic truth table of the negation operator $\neg p$ is as follows:

$\begin {array} {|c||c|} \hline p & \neg p \\ \hline \F & \T \\ \T & \F \\ \hline \end {array}$

### Logical Conjunction

The characteristic truth table of the logical conjunction operator $p \land q$ is as follows:

$\begin{array}{|cc||c|} \hline p & q & p \land q \\ \hline \F & \F & \F \\ \F & \T & \F \\ \T & \F & \F \\ \T & \T & \T \\ \hline \end{array}$

### Logical Disjunction

The characteristic truth table of the logical disjunction operator $p \lor q$ is as follows:

$\begin{array}{|cc||c|} \hline p & q & p \lor q \\ \hline \F & \F & \F \\ \F & \T & \T \\ \T & \F & \T \\ \T & \T & \T \\ \hline \end{array}$

### Biconditional

The characteristic truth table of the biconditional operator $p \iff q$ is as follows:

$\begin{array}{|cc||c|} \hline p & q & p \iff q \\ \hline \F & \F & \T \\ \F & \T & \F \\ \T & \F & \F \\ \T & \T & \T \\ \hline \end{array}$

### Exclusive Disjunction

The characteristic truth table of the exclusive or operator $p \oplus q$ is as follows:

$\begin{array}{|cc||c|} \hline p & q & p \oplus q \\ \hline \F & \F & \F \\ \F & \T & \T \\ \T & \F & \T \\ \T & \T & \F \\ \hline \end{array}$

### Conditional

The characteristic truth table of the conditional (implication) operator $p \implies q$ is as follows:

$\begin {array} {|cc||c|} \hline p & q & p \implies q \\ \hline \F & \F & \T \\ \F & \T & \T \\ \T & \F & \F \\ \T & \T & \T \\ \hline \end {array}$

### Logical NAND

The characteristic truth table of the logical NAND operator $p \uparrow q$ is as follows:

$\begin{array}{|cc||c|} \hline p & q & p \uparrow q \\ \hline \F & \F & \T \\ \F & \T & \T \\ \T & \F & \T \\ \T & \T & \F \\ \hline \end{array}$

### Logical NOR

The characteristic truth table of the logical NOR operator $p \downarrow q$ is as follows:

$\begin {array} {|cc||c|} \hline p & q & p \downarrow q \\ \hline \F & \F & \T \\ \F & \T & \F \\ \T & \F & \F \\ \T & \T & \F \\ \hline \end {array}$