Definition:Closed Linear Span
Jump to navigation
Jump to search
![]() | This page has been identified as a candidate for refactoring of basic complexity. Until this has been finished, please leave {{Refactor}} in the code.
New contributors: Refactoring is a task which is expected to be undertaken by experienced editors only. Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Refactor}} from the code. |
Definition
Let $H$ be a Hilbert space, and let $A \subseteq H$ be a subset.
Then the closed linear span of $A$, denoted $\vee A$, is defined in the following ways:
- $(1): \quad \ds \vee A = \bigcap \Bbb M$, where $\Bbb M$ consists of all closed linear subspaces $M$ of $H$ with $A \subseteq M$
- $(2): \quad \vee A$ is the smallest closed linear subspace $M$ of $H$ with $A \subseteq M$
- $(3): \quad \vee A = \map \cl {\map \span A}$, where $\cl$ denotes closure, and $\span$ denotes linear span.
Also denoted as
The closed linear span of $A$ is often written $\map {\operatorname {clin} } A$.
When $\Bbb A$ is a collection of subsets of $H$, the notation $\vee \Bbb A$ is often used for $\ds \map \vee {\bigcup \Bbb A}$.
When $\Bbb A = \family {A_i: i \in I}$ is an $I$-indexed collection of subsets of $H$, also $\vee_i A_i$ may be encountered.
Also see
- Definition:Linear Span, which justifies the nomenclature by definition $(3)$.
- Double Orthocomplement is Closed Linear Span, for another characterisation of the closed linear span.
Sources
- 1990: John B. Conway: A Course in Functional Analysis (2nd ed.) ... (previous) ... (next): $\text{I}$ Hilbert Spaces: $\S 2.$ Orthogonality: Exercise $4$