Definition:Common Divisor/Integral Domain
< Definition:Common Divisor(Redirected from Definition:Common Divisor of Ring Elements)
Jump to navigation
Jump to search
Definition
Let $\struct {D, +, \times}$ be an integral domain.
Let $S \subseteq D$ be a finite subset of $D$.
Let $c \in D$ such that $c$ divides all the elements of $S$, that is:
- $\forall x \in S: c \divides x$
Then $c$ is a common divisor (or common factor) of all the elements in $S$.
Sources
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 62$. Factorization in an integral domain