Definition:Completely Metrizable Topology

From ProofWiki
Jump to navigation Jump to search


Let $\struct {S, \tau}$ be a topological space.

The space $\struct {S, \tau}$ is said to be completely metrizable if and only if there exists a metric $d$ such that:

$\struct {S, d}$ is a complete metric space


$\tau$ is the topological space induced by the metric $d$.

Also see

  • Results about completely metrizable topologies can be found here.