Definition:Congruence (Number Theory)/Integer Multiple
Definition
Let $z \in \R$.
Let $x, y \in \R$.
Then $x$ is congruent to $y$ modulo $z$ if and only if their difference is an integer multiple of $z$:
- $x \equiv y \pmod z \iff \exists k \in \Z: x - y = k z$
Notation
The relation $x$ is congruent to $y$ modulo $z$, usually denoted:
- $x \equiv y \pmod z$
is also frequently seen denoted as:
- $x \equiv y \ \paren {\mathop {\operatorname{modulo} } z}$
Some (usually older) sources render it as:
- $x \equiv y \ \paren {\mathop {\operatorname{mod.} } z}$
Examples
Congruence Modulo $1$
Let $x \equiv y \pmod 1$ be defined as congruence on the real numbers modulo $1$:
- $\forall x, y \in \R: x \equiv y \pmod 1 \iff \exists k \in \Z: x - y = k$
That is, if their difference $x - y$ is an integer.
The equivalence classes of this equivalence relation are of the form:
- $\eqclass x 1 = \set {\dotsc, x - 2, x - 1, x, x + 1, x + 2, \dotsc}$
Each equivalence class has exactly one representative in the half-open real interval:
- $\hointr 0 1 = \set {x \in \R: 0 \le x < 1}$
Congruence Modulo $2 \pi$ as Angular Measurement
Let $\RR$ denote the relation on the real numbers $\R$ defined as:
- $\forall x, y \in \R: \tuple {x, y} \in \RR \iff \text {$x$ and $y$}$ measure the same angle in radians
Then $\RR$ is the congruence relation modulo $2 \pi$.
The equivalence classes of this equivalence relation are of the form:
- $\eqclass \theta {2 \pi} = \set {\theta + 2 k \pi: k \in \Z}$
Hence for example:
- $\eqclass 0 {2 \pi} = \set {2 k \pi: k \in \Z}$
and:
- $\eqclass {\dfrac \pi 2} {2 \pi} = \set {\dfrac {\paren {4 k + 1} \pi} 2: k \in \Z}$
Each equivalence class has exactly one representative in the half-open real interval:
- $\hointr 0 {2 \pi} = \set {x \in \R: 0 \le x < 2 \pi}$
and have a one-to-one correspondence with the points on the circumference of a circle.
Also see
Linguistic Note
The word modulo comes from the Latin for with modulus, that is, with measure.
Sources
- 1971: George E. Andrews: Number Theory ... (previous) ... (next): $\text {4-1}$ Basic Properties of Congruences: Definition $\text {4-1}$
- 1982: P.M. Cohn: Algebra Volume 1 (2nd ed.) ... (previous) ... (next): $\S 2.3$: Congruences
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.4$: Integer Functions and Elementary Number Theory