Definition:Convergent Sequence/P-adic Numbers
< Definition:Convergent Sequence(Redirected from Definition:Convergent P-adic Sequence)
Jump to navigation
Jump to search
Definition
Let $p$ be a prime number.
Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the $p$-adic numbers.
Let $\sequence {x_n} $ be a sequence in $\Q_p$.
Definition 1
The sequence $\sequence {x_n}$ converges to the limit $x \in \Q_p$ if and only if:
- $\forall \epsilon \in \R_{>0}: \exists N \in \R_{>0}: \forall n \in \N: n > N \implies \norm {x_n - x}_p < \epsilon$
Definition 2
The sequence $\sequence {x_n}$ converges to the limit $x \in \Q_p$ if and only if:
- $\sequence {x_n}$ converges to $x$ in the $p$-adic norm
Definition 3
The sequence $\sequence {x_n}$ converges to the limit $x \in \Q_p$ if and only if:
- $\sequence {x_n}$ converges to $x$ in the $p$-adic metric
Definition 4
The sequence $\sequence {x_n}$ converges to the limit $x \in \Q_p$ if and only if:
- the real sequence $\sequence {\norm {x_n - x}_p }$ converges to $0$ in the reals $\R$