Definition:Convergent Sequence/Normed Division Ring
Jump to navigation
Jump to search
Definition
Let $\struct {R, \norm {\, \cdot \,} }$ be a normed division ring.
Let $\sequence {x_n} $ be a sequence in $R$.
Definition 1
The sequence $\sequence {x_n}$ converges to the limit $x \in R$ in the norm $\norm {\, \cdot \,}$ if and only if:
- $\forall \epsilon \in \R_{>0}: \exists N \in \R_{>0}: \forall n \in \N: n > N \implies \norm {x_n - x} < \epsilon$
Definition 2
The sequence $\sequence {x_n}$ converges to the limit $x \in R$ in the norm $\norm {\, \cdot \,}$ if and only if:
- $\sequence {x_n}$ converges to $x$ in the metric induced by the norm $\norm {\, \cdot \,}$
Definition 3
The sequence $\sequence {x_n}$ converges to the limit $x \in R$ in the norm $\norm {\, \cdot \,}$ if and only if:
- the real sequence $\sequence {\norm {x_n - x} }$ converges to $0$ in the reals $\R$
Definition 4
The sequence $\sequence {x_n}$ converges to the limit $x \in R$ in the norm $\norm {\, \cdot \,}$ if and only if:
- $\sequence {x_n}$ converges to $x$ in the topology induced by the norm $\norm {\, \cdot \,}$
Also see
- Definition:Metric Induced by Norm
- Metric Induced by Norm is Metric
- Definition:Convergent Real Sequence
- Equivalence of Definitions of Convergence in Normed Division Rings