Definition:Cube Root
Jump to navigation
Jump to search
Definition
Real Numbers
Let $x \in \R_{\ge 0}$ be a positive real number.
The cube roots of $x$ is the real number defined as:
- $x^{\paren {1 / 3} } := \set {y \in \R: y^3 = x}$
where $x^{\paren {1 / 3} }$ is the $3$rd root of $x$.
The notation:
- $y = \sqrt [3] x$
is usually encountered.
Complex Numbers
Definition:Cube Root/Complex Number
Examples
Cube Root of 2
The decimal expansion of the cube root of $2$ starts:
- $\sqrt [3] 2 \approx 1 \cdotp 25992 \, 10498 \, 94873 \, 16476 \ldots$
Cube Root of 3
The decimal expansion of the cube root of $3$ starts:
- $\sqrt [3] 3 \approx 1 \cdotp 44224 \, 95703 \, 07408 \, 3823 \ldots$
Cube Root of 5
The decimal expansion of the cube root of $5$ starts:
- $\sqrt [3] 5 \approx 1 \cdotp 70997 \, 59466 \, 76696 \, 9893 \ldots$
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): cube root
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): cube root
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): cube root