Definition:Definite Integral
![]() | This page has been identified as a candidate for refactoring of medium complexity. In particular: In progress: to have Riemann, Darboux and Lebesgue definitions (and Stieltjes also got an oar in) as subpages. Until this has been finished, please leave {{Refactor}} in the code.
New contributors: Refactoring is a task which is expected to be undertaken by experienced editors only. Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Refactor}} from the code. |
Definition
Let $\closedint a b$ be a closed real interval.
Let $f: \closedint a b \to \R$ be a real function.
Riemann Integral
Let $\Delta$ be a finite subdivision of $\closedint a b$, $\Delta = \set {x_0, \ldots, x_n}$, $x_0 = a$ and $x_n = b$.
Let there for $\Delta$ be a corresponding sequence $C$ of sample points $c_i$, $C = \tuple {c_1, \ldots, c_n}$, where $c_i \in \closedint {x_{i - 1} } {x_i}$ for every $i \in \set {1, \ldots, n}$.
Let $\map S {f; \Delta, C}$ denote the Riemann sum of $f$ for the subdivision $\Delta$ and the sample point sequence $C$.
Then $f$ is said to be (properly) Riemann integrable on $\closedint a b$ if and only if:
- $\exists L \in \R: \forall \epsilon \in \R_{>0}: \exists \delta \in \R_{>0}: \forall$ finite subdivisions $\Delta$ of $\closedint a b: \forall$ sample point sequences $C$ of $\Delta: \norm \Delta < \delta \implies \size {\map S {f; \Delta, C} - L} < \epsilon$
where $\norm \Delta$ denotes the norm of $\Delta$.
The real number $L$ is called the Riemann integral of $f$ over $\closedint a b$ and is denoted:
- $\ds \int_a^b \map f x \rd x$
Darboux Integral
Let $f$ be bounded on $\closedint a b$.
Suppose that:
- $\ds \underline {\int_a^b} \map f x \rd x = \overline {\int_a^b} \map f x \rd x$
where $\ds \underline {\int_a^b}$ and $\ds \overline {\int_a^b}$ denote the lower integral and upper integral, respectively.
Then the definite (Darboux) integral of $f$ over $\closedint a b$ is defined as:
- $\ds \int_a^b \map f x \rd x = \underline {\int_a^b} \map f x \rd x = \overline {\int_a^b} \map f x \rd x$
$f$ is formally defined as (properly) integrable over $\closedint a b$ in the sense of Darboux, or (properly) Darboux integrable over $\closedint a b$.
More usually (and informally), we say:
- $f$ is (Darboux) integrable over $\closedint a b$.
Limits of Integration
In the expression $\ds \int_a^b \map f x \rd x$, the values $a$ and $b$ are called the limits of integration.
If there is no danger of confusing the concept with limit of a function or of a sequence, just limits.
Thus $\ds \int_a^b \map f x \rd x$ can be voiced:
- The integral of (the function) $f$ of $x$ with respect to $x$ (evaluated) between the limits (of integration) $a$ and $b$.
More compactly (and usually), it is voiced:
- The integral of $f$ of $x$ with respect to $x$ between $a$ and $b$
or:
- The integral of $f$ of $x$ dee $x$ from $a$ to $b$
Lower Limit
The limit $a$ is referred to as the lower limit of the integral.
Upper Limit
The limit $b$ is referred to as the upper limit of the integral.
Also known as
The interval defined by the limits of integration can be referred to as the range of integration.
Some sources refer to it as the interval of integration.
Also see
From the Fundamental Theorem of Calculus, we have that:
- $\ds \int_a^b \map f x \rd x = \map F b - \map F a$
where $F$ is a primitive of $f$, that is:
- $\map f x = \dfrac \d {\d x} \map F x$
Then $\map F b - \map F a$ is usually written:
- $\bigintlimits {\map F x} {x \mathop = a} {x \mathop = b} := \map F b - \map F a$
or, when there is no chance of ambiguity as to the independent variable:
- $\bigintlimits {\map F x} a b := \map F b - \map F a$
Some sources use:
- $\bigvalueat {\map F x} a^b := \map F b - \map F a$
but this is not recommended, as it is not so clear exactly where the expression being evaluated actually starts.
Integrand
In the expression for the definite integral:
- $\ds \int_a^b \map f x \rd x$
the function $f$ is called the integrand.
Also known as
Many sources whose target consists of students at a relatively elementary level refer to this merely as a definite integral.
Expositions which delve deeper into the structure of integral calculus often establish the concepts of the Riemann integral and the Darboux integral, and contrast them with the Lebesgue integral, which is an extension of the concept into the more general field of measure theory.
Examples
Definite Integral of $x^2$ from $0$ to $2$
- $\ds \int_0^2 x^2 \rd x = \dfrac 8 3$
Definite Integral of $\sqrt x$ from $0$ to $4$
- $\ds \int_0^4 \sqrt x \rd x = \dfrac {16} 3$
Definite Integral of $\cos x$ from $0$ to $\dfrac \pi 2$
- $\ds \int_0^{\pi / 2} \cos x \rd x = 1$
Definite Integral of $\dfrac 1 x$ from $1$ to $e$
- $\ds \int_1^e \dfrac {\d x} x = 1$
Definite Integral of $\dfrac 1 {1 - x}$ from $2$ to $3$
- $\ds \int_2^3 \dfrac {\d x} {1 - x} = \ln \dfrac 1 2$
Also see
- Results about definite integrals can be found here.
There are more general definitions of integration; see:
Sources
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): definite interval
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): integral