Definition:Degree of Polynomial/Integral Domain
< Definition:Degree of Polynomial(Redirected from Definition:Degree of Polynomial over Integral Domain)
Jump to navigation
Jump to search
Definition
Let $\struct {R, +, \circ}$ be a commutative ring with unity whose zero is $0_R$.
Let $\struct {D, +, \circ}$ be an integral subdomain of $R$.
Let $X \in R$ be transcendental over $D$.
Let $\ds f = \sum_{j \mathop = 0}^n \paren {r_j \circ X^j} = r_0 + r_1 X + \cdots + r_n X^n$ be a polynomial over $D$ in $X$ such that $r_n \ne 0$.
Then the degree of $f$ is $n$.
The degree of $f$ is denoted on $\mathsf{Pr} \infty \mathsf{fWiki}$ by $\map \deg f$.
Also known as
The degree of a polynomial is also referred to by some sources as its order.
Some sources denote the degree of a polynomial by $\partial f$
Sources
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 64$. Polynomial rings over an integral domain