Definition:Derivative/Complex Function
Definition
The definition for a complex function is similar to that for real functions.
At a Point
Let $D\subseteq \C$ be an open set.
Let $f : D \to \C$ be a complex function.
Let $z_0 \in D$ be a point in $D$.
Let $f$ be complex-differentiable at the point $z_0$.
That is, suppose the limit $\ds \lim_{h \mathop \to 0} \ \frac {\map f {z_0 + h} - \map f {z_0} } h$ exists.
Then this limit is called the derivative of $f$ at the point $z_0$.
On an Open Set
Let $D\subseteq \C$ be an open set.
Let $f : D \to \C$ be a complex function.
Let $f$ be complex-differentiable in $D$.
Then the derivative of $f$ is the complex function $f': D \to \C$ whose value at each point $z \in D$ is the derivative $\map {f'} z$:
- $\ds \forall z \in D : \map {f'} z := \lim_{h \mathop \to 0} \frac {\map f {z + h} - \map f z} h$
Also known as
Some sources refer to a derivative as a differential coefficient, and abbreviate it D.C.
Some sources call it a derived function.
Notation
There are various notations available to be used for the derivative of a function $f$ with respect to the independent variable $x$:
- $\dfrac {\d f} {\d x}$
- $\map {\dfrac \d {\d x} } f$
- $\dfrac {\d y} {\d x}$ when $y = \map f x$
- $\map {f'} x$
- $\map {D f} x$
- $\map {D_x f} x$
When evaluated at the point $\tuple {x_0, y_0}$, the derivative of $f$ at the point $x_0$ can be variously denoted:
- $\map {f'} {x_0}$
- $\map {D f} {x_0}$
- $\map {D_x f} {x_0}$
- $\map {\dfrac {\d f} {\d x} } {x_0}$
- $\valueat {\dfrac {\d f} {\d x} } {x \mathop = x_0}$
and so on.
Leibniz Notation
Leibniz's notation for the derivative of a function $y = \map f x$ with respect to the independent variable $x$ is:
- $\dfrac {\d y} {\d x}$
Newton Notation
Newton's notation for the derivative of a function $y = \map f t$ with respect to the independent variable $t$ is:
- $\map {\dot f} t$
or:
- $\dot y$
which many consider to be less convenient than the Leibniz notation.
This notation is usually reserved for the case where the independent variable is time.