Definition:Discontinuous Mapping/Topological Space/Point
< Definition:Discontinuous Mapping | Topological Space(Redirected from Definition:Discontinuous at Point of Topological Space)
Jump to navigation
Jump to search
Definition
Let $T_1 = \left({A_1, \tau_1}\right)$ and $T_2 = \left({A_2, \tau_2}\right)$ be topological spaces.
Let $f: A_1 \to A_2$ $x \in T_1$ be a mapping from $A_1$ to $A_2$.
Then by definition $f$ is continuous at $x$ if for every neighborhood $N$ of $f \left({x}\right)$ there exists a neighborhood $M$ of $x$ such that $f \left({M}\right) \subseteq N$.
Therefore, $f$ is discontinuous at $x$ if for some neighbourhood $N$ of $f \left({x}\right)$ and every neighbourhood $M$ of $x$, $f \left({M}\right) \nsubseteq N$.
The point $x$ is called a discontinuity of $f$.