Definition:Distribution
Jump to navigation
Jump to search
Definition
Let $\map \DD {\R^d}$ be a test function space.
Let $\phi, \psi \in \map \DD {\R^d}$ be test functions.
Let $\alpha \in \C$ be a complex number.
Let $\sequence {\phi_n}_{n \mathop \in \N}$ be a convergent sequence in $\map \DD {\R^d}$ with the limit $\phi \in \map \DD {\R^d}$.
Suppose a mapping $T : \map \DD {\R^d} \to \C$ is linear and continuous:
- $\forall \psi, \phi \in \map \DD {\R^d} : \map T {\phi + \psi} = \map T \phi + \map T \psi$
- $\forall \phi \in \map \DD {\R^d} : \forall \alpha \in \C : \map T {\alpha \cdot \phi} = \alpha \cdot \map T \phi$
- $\paren {\phi_n \stackrel \DD {\longrightarrow} \phi} \implies \paren {\map T {\phi_n} \to \map T \phi}$
Then $T$ is a distribution.
Also denoted as
The mapping $\map T \phi$ is presented by some sources as $\innerprod T \phi$.
Notation
To avoid confusion between a distribution and the generating function involved, one can write the function as a subscript.
Suppose we have a distribution $T_f : \map \DD \R \to \C$ and a test function $\phi \in \map \DD \R$.
This would correspond to the following mapping:
- $\ds \phi \stackrel {T_f} {\longrightarrow} \int_{-\infty}^\infty \map f x \map \phi x \rd x$
Also see
- Results about distributions can be found here.
Sources
- 2017: Amol Sasane: A Friendly Approach to Functional Analysis ... (previous) ... (next): Chapter $\S 6.1$: A glimpse of distribution theory. Test functions, distributions, and examples