Definition:Eigenvalue/Real Square Matrix
< Definition:Eigenvalue(Redirected from Definition:Eigenvalue of Real Square Matrix)
Jump to navigation
Jump to search
Definition
Let $\mathbf A$ be a square matrix of order $n$ over $\R$.
Let $\lambda \in \R$.
$\lambda$ is an eigenvalue of $A$ if and only if there exists a non-zero vector $\mathbf v \in \R^n$ such that:
- $\mathbf A \mathbf v = \lambda \mathbf v$
Also see
- Definition:Eigenvector of Real Square Matrix
- Eigenvalues of Real Square Matrix are Roots of Characteristic Equation shows that we can find the eigenvalues of $\mathbf A$ by solving the equation $\map \det {\mathbf A - \lambda \mathbf I} = 0$ for $\lambda$.
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): eigenvalue
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): eigenvalue
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): eigenvalue, eigenvector